Interrogation n°1. Barème sur 23.5 pts

1) [1 pt] Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. On pose $S(\theta) = \sum_{k=0}^{n} {n \choose k} \cos(k\theta)$. Montrer que $S(\theta) = 2^n \cos\left(\frac{n\theta}{2}\right) \left(\cos\left(\frac{\theta}{2}\right)\right)^n$.

2) [2 pts] On considère le polynôme réel $P(X) = 1 + X^2 + X^4 + X^6$.

Donner, sans tout détailler, la décomposition de P(X) en facteurs irréductibles dans $\mathbb{R}[X]$

3) a) [0.5 pt] Expliciter sans justification tous les polynômes de $\mathbb{R}[X]$ tels que

$$P(0) = P(1) = P'(1) = 0$$

b) [2 pts] Déterminer **tous** les polynômes de $\mathbb{R}[X]$ tels que

$$P(0) = P(1) = P'(1) = 1$$

Suggestion: Pour se ramener à une situation plus simple, on pourra faire intervenir le polynôme Q(X) = 1.

4) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} u_k$$

a) [1.5 pt] Justifier que pour tout $p \in \mathbb{N}$ fixé, $\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^p \binom{n}{k} u_k = 0$.

Suggestion: Traiter d'abord le cas p=2 permet de saisir la nature des objets considérés.

- b) [2 pts] On suppose $\lim_{n\to+\infty} u_n = 0$. Montrer avec soin que $\lim_{n\to+\infty} v_n = 0$.
- c) [1 pt] Prouver à l'aide d'un exemple que la réciproque de b) est fausse.
- d) [0.5 pt] On suppose $\lim_{n\to+\infty}u_n=L\in\mathbb{R}$. Montrer brièvement que $\lim_{n\to+\infty}v_n=L$.
- 5) Pour tout polynôme réel P, on définit $\|P\|_{\infty} = \sup_{x \in [-2,2]} |P(x)|$
- a) [2.5 pts] Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique polynôme Q_n unitaire à coefficients dans \mathbb{Z} vérifiant

$$\forall \theta \in \mathbb{R}, \quad Q_n(2\cos\theta) = 2\cos(n\theta)$$

Indication : Pour l'existence, définir une suite $(Q_n)_{n\in\mathbb{N}}$ par une récurrence d'ordre 2, avec $Q_0=2$.

- b) [1 pt] Exprimer sans justification Q_n en fonction du polynôme de Tchebychev T_n .
- c) [1 pt] Soit $n \in \mathbb{N}^*$. Donner sans justification la valeur de $||Q_n||_{\infty}$, et expliciter (n+1) réels x_k tels que

$$-2 \le x_n < \dots < x_0 \le 2$$
 et $\forall k \in [0, n], Q_n(x_k) = (-1)^k ||Q_n||_{\infty}$

d) [1.5 pt] Soit $n \in \mathbb{N}^*$ et P un polynôme unitaire de degré n. Montrer que $\|P\|_{\infty} \ge \|Q_n\|_{\infty}$.

Indication: Raisonner par l'absurde et considérer les $(Q_n - P)(x_k)$.

6) Soit $n \in \mathbb{N}^*$. Soient (n+1) réels distincts vérifiant $x_n < x_{n-1} < ... < x_0$.

Pour tout entier k vérifiant $0 \le k \le n$, on pose $L_k(X) = \prod_{0 \le j \le n, j \ne k} \frac{X - x_j}{x_k - x_j} \in \mathbb{R}_n[X]$.

- a) [1 pt] Montrer que pour tout polynôme R de degré $\leq n$, on a : $R(X) = \sum_{k=0}^{n} R(x_k) L_k(X)$.
- b) [1 pt] En déduire que pour tout polynôme R de degré $\leq n-1$,

$$\sum_{k=0}^{n} \frac{R(x_k)}{\prod_{0 \le j \le n, \ j \ne k} (x_k - x_j)} = 0$$

c) Question supplémentaire hors-interrogation

Soit $n \in \mathbb{N}^*$. On reprend les notations de l'exercice 5). Soit P polynôme unitaire et de degré n.

On sait que $||P||_{\infty} \ge ||Q_n||_{\infty}$. On suppose $||P||_{\infty} = ||Q_n||_{\infty}$.

En posant $R = Q_n - P$, montrer que $\forall k \in [0, n], (-1)^k R(x_k) \ge 0$. En déduire R = 0.

- 7) [2 pts] a) Soient des entiers $0 \le k \le n$. Montrer que $\frac{n!}{\prod_{0 \le j \le n, \ j \ne k} (k-j)} \in \mathbb{Z}$.
- b) Soit $P \in \mathbb{C}[X]$ un polynôme non nul de degré n tel que $P(\mathbb{Z}) \subset \mathbb{Z}$.

On pose Q(X) = n! P(X). Montrer que tous les coefficients du polynôme Q(X) appartiennent à \mathbb{Z} .

8) Soit P un polynôme réel de degré $n \in \mathbb{N}$ et positif sur \mathbb{R} , c'est-à-dire $\forall x \in \mathbb{R}$, $P(x) \geq 0$.

Les deux questions sont indépendantes.

- a) [1 pt] Montrer que $R(X) = P(X) + P'(X) + \frac{P''(X)}{2} + \dots + \frac{P^{(n)}(X)}{n!}$ est positif sur \mathbb{R} .
- b) [1 pt] (\bigstar) Montrer que $Q(X) = P(X) + P'(X) + \dots + P^{(n)}(X)$ est positif sur \mathbb{R} .

Suggestion: Une des preuves consiste à utiliser la fonction $f(x) = e^{-x}Q(x)$.

9) [1 pt] (\bigstar) Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\forall x \in \mathbb{R}, f(x) = f(2x - 1)$.

Montrer que f est constante.