Exemples de sujets posés aux oraux des concours

Les exercices sont indépendants et ceux marqués d'une étoile (\bigstar) sont a priori les plus difficiles.

- 1) (X-ESPCI) Soit $f \in C^0([0,1], \mathbb{R})$ telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer qu'il existe $a \in [0,1]$ tel que f(a) = a.
- 2) (Centrale) a) Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{C}) = \mathbb{C}$.
- b) Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{R}) = \mathbb{R}$.
- 3) (X-ESPCI) On note Δ_n l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients appartiennent à $\{-1,1\}$.
- a) Calculer card Δ_n .
- b) Soit $n \in \mathbb{N}^*$. Montrer que si $A \in \Delta_n$, alors det A est un entier multiple de 2^{n-1} .
- 4) (Mines) On répartit n objets dans (n-1) boîtes. Déterminer la probabilité qu'aucune boîte ne soit vide.

Remarque : Il est sous-entendu ici que chaque objet est placé dans une boîte choisie selon la loi uniforme et que les placements des différents objets sont indépendants les uns des autres.

5) (inspiré X-ESPCI) Soit $n \in \mathbb{N}^*$. On pose E = [1, n].

On note Ω l'ensemble des fonctions de E dans lui-même. On munit Ω de la loi uniforme.

- a) On fixe $y \in E$. Pour $x \in E$, on considère l'événement $A_x : f(x) = y$.
- Montrer que les événéments A_x sont indépendants et que $\forall x \in E, P(f(x) = y) = \frac{1}{n}$.

En déduire la loi du nombre N_y d'antécédents de y par f.

b) Pour $f \in \Omega$, on note X(f) le nombre d'éléments de E admettant au moins trois antécédents par f.

Déterminer un équivalent de E(X) lorsque n tend vers $+\infty$.

6) (extrait X) Soit $x_0 \in \mathbb{R}$. Soient f et $g: \mathbb{R} \to \mathbb{R}$ de classe C^1 telles que $f(x_0) = g(x_0)$ et $\forall x, f(x) \leq g(x)$.

Montrer que $f'(x_0) = g'(x_0)$.

7) (extrait de X-ESPCI) Equation de Poisson discrète.

On note $F = \{X = (x_1, ..., x_n) \in \mathbb{R}^n \mid x_1 = x_n = 0\}.$

On considère $\Delta: F \to F \ X = (x_1, ..., x_n) \longmapsto Y = (y_1, ..., y_n)$ définie par

$$y_1 = 0$$
 et $y_n = 0$ et $\forall i \in \{2, ..., n-1\}, \quad y_i = x_{i+1} + x_{i-1} - 2x_i$

Montrer que Δ est bijective.

Remarque culturelle: L'opérateur de dérivation discrète d'une suite est $\delta: (x_n)_{n\in\mathbb{N}} \longmapsto (x_{n+1}-x_n)_{n\in\mathbb{N}}$.

Ainsi, on a δ^2 : $(x_n)_{n\in\mathbb{N}} \longmapsto (x_{n+2}+x_n-2x_{n+1})_{n\in\mathbb{N}}$. La résolution $\Delta(y)=0$ est la version discrète de la résolution de l'équation différentielle y''=0 sur [0,1] avec les conditions initiales y(0)=y(1)=0.

- 8) (X-ESPCI) Soit E un K-ev de dimension finie n, et H_k des hyperplans de E, avec $1 \le k \le p$.
- a) Montrer que $\dim(H_1 \cap H_2 \cap ... \cap H_p) \ge n p$.
- b) Proposer de même une minoration de $\dim(F_1 \cap F_2 \cap ... \cap F_p)$, où les F_k sont des sev de E. On posera $d_k = \dim F_k$.
- c) Donner une condition suffisante pour qu'il existe un vecteur non nul commun aux F_k , avec $1 \le k \le p$.
- **9)** (X) Rappel: Une application $f:[0,+\infty[\to\mathbb{R} \text{ est dite surjective ssi } f([0,+\infty[)=\mathbb{R}.$
- a) Donner un exemple d'application continue surjective $f:[0,+\infty[\to\mathbb{R}]]$
- b) Montrer que toute application continue surjective $f:[0,+\infty[\to\mathbb{R} \text{ admet un nombre infini de zéros.}]$
- **10)** (X) Soit $f: \mathbb{R} \to \mathbb{R}$ continue. On suppose que la fonction $x \longmapsto f(x+1) f(x)$ est bornée sur \mathbb{R} . Montrer qu'il existe a et b tels que $\forall x \in \mathbb{R}, |f(x)| \le a|x| + b$.
- 11) (Mines) Une urne contient n jetons numérotés de 1 à n. On tire simultanément deux jetons.

On note X le numéro du plus petit numéro tiré, Y le numéro du plus grand.

Donner les lois de X et de Y. Calculer E(X) et E(Y).

12) (Mines) (\bigstar) Soit $f \in \mathcal{L}(E,F)$, avec E et F de dimensions finies n et p.

On pose $A(f) = \{g \in \mathcal{L}(F, E) \mid f \circ g \circ f = 0\}.$

- a) Montrer que A(f) est un sev de $\mathcal{L}(F, E)$.
- b) Déterminer $\dim A(f)$.

Suggestion: Reformuler la condition $f \circ g \circ f = 0$ à l'aide de $g(\operatorname{Im} f)$ et Ker f.

Considérer alors la matrice $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}g$ de g, où \mathcal{C} est une base de F adaptée à $\operatorname{Im} f \oplus T = F$ et où \mathcal{B} est une base de E adaptée à $\operatorname{Ker} f \oplus S = E$.

- c) Donner une condition nécessaire et suffisante sur f pour que $A(f) = \{0\}$.
- 13) (inspiré X) On considère Γ le cercle unité de \mathbb{R}^2 , A le point (-1,0), et $M=(\cos\theta,\sin\theta)\in\Gamma$ distinct de A. On note P l'intersection de la droite (AM) et de la droite \mathcal{D} d'équation x=1.

On note Δ l'ensemble des points de Γ dont les deux coordonnées appartiennent à \mathbb{Q} .

- a) Expliciter les coordonnées du point P.
- b) Montrer que les assertions suivantes sont équivalentes :
 - (i) P est à coordonnées rationnelles
 - (ii) $t = \tan(\frac{\theta}{2})$ est un nombre rationnel
 - (iii) M est à coordonnées rationnelles, c'est-à-dire $M \in \Delta$
- c) (\bigstar) Montrer que tout point de Γ est limite de points de Δ (on dit que Δ est dense dans Γ).
- **14)** (X) Soit $f: \mathbb{R} \to \mathbb{R}$ une application de classe C^2 .
- a) On suppose que $f(x) = \mathfrak{o}(1)$ pour $|x| \to +\infty$. Montrer que f' s'annule au moins une fois sur \mathbb{R} .
- b) On suppose qu'il existe $A \in \mathbb{R}$ et $\delta > 0$ tels que $\forall x \geq A, |f'(x)| \geq \delta$.

Montrer qu'il existe $\lambda > 0$ tel que $|f(x)| \ge \lambda x$ au voisinage de $+\infty$ (c'est-à-dire pour x assez grand).

Proposer sans justification un énoncé analogue en $-\infty$.

c) (\bigstar) On suppose que $f(x) = \mathfrak{o}(|x|)$ pour $|x| \to +\infty$. Montrer que f'' s'annule au moins une fois sur \mathbb{R} .

Indication: Raisonner par l'absurde et utiliser b).

- **15)** a) Soit $u \in \mathcal{L}(E)$, avec E de dimension finie, tel que $\operatorname{rg} u = \operatorname{rg} u^2$. Montrer que $\forall p \in \mathbb{N}^*$, $\operatorname{rg} u^p = \operatorname{rg} u$.
- b) (ENS) En considérant rg A, montrer qu'il n'existe pas de matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- **16)** (X-ESPCI) (\bigstar) Soit A un ensemble fini de réels de cardinal $n \ge 2$. On pose $X = A + A = \{a + b, (a, b) \in A^2\}$.
- a) Montrer que $2n-1 \le \operatorname{card} X \le \frac{1}{2}n(n+1)$.
- b) Donner un exemple où card $X = \frac{1}{2}n(n+1)$.

Suggestion: Exploiter l'unicité de l'écriture d'un entier naturel en base 2.

17) Soit $(Z_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli $\mathcal{B}(\frac{1}{2})$. On considère

$$Y_n = \sum_{k=1}^n \frac{Z_k}{2^k}$$

- a) Déterminer (sans calcul !) la loi de Y_n .
- b) Soit $f:[0,1]\to\mathbb{R}$ une fonction continue par morceaux. Déterminer $\lim_{n\to+\infty} E(f(Y_n))$.
- 18) (X-EXPCI) Soient $n \in \mathbb{N}^*$ et $x_1 < x_2 < ... < x_n$ des réels distincts classés par ordre croissant.

- a) Montrer que $A = \left\{ x \in \mathbb{R} \setminus \{x_1, ..., x_n\} \mid \sum_{k=1}^n \frac{1}{x x_k} \ge 1 \right\}$ est une réunion finie d'intervalles disjoints.
- b) (\bigstar) On note S la somme des longueurs de ces intervalles. Montrer que S=n.
- **19)** (extrait ENS) (\bigstar) Soit n=2m+1 un entier naturel impair. Montrer que

$$\forall x \in \mathbb{R}, \sin(nx) = n(\sin x) \prod_{k=1}^{m} \left(1 - \frac{(\sin x)^2}{\sin(k\pi/n)^2}\right)$$

20) (Centrale) (\bigstar) Soit $f:[0,1] \to \mathbb{R}$ une fonction continue. On pose $M = \sup_{[0,1]} |f|$.

Soit $(Z_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli $\mathcal{B}(\frac{1}{2})$.

Pour tout $n \in \mathbb{N}^*$, on pose $X_n = \frac{1}{n} \sum_{k=1}^n Z_k$

a) Soit $\varepsilon > 0$. Soient $x_0 \in [0,1]$ et X une v.a. à valeurs dans [0,1].

On considère l'événement $A: |f(X) - f(x_0)| \le \varepsilon$. Montrer que $|E(f(X)) - f(x_0)| \le \varepsilon + 2M P(\overline{A})$.

- b) Déterminer $\lim_{n\to+\infty} E(f(X_n))$.
- **21)** (X-ESPCI) Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels positifs.

Pour
$$n \in \mathbb{N}^*$$
, on pose $u_n = \sqrt{a_1 + \sqrt{a_2 + ... + \sqrt{a_n}}}$.

Remarque : On pourra noter $u_n(a_1, a_2, ..., a_n)$ lorsqu'on considère u_n comme fonction des a_k .

- a) On suppose que $\forall n \in \mathbb{N}^*, a_n = 1$. Déterminer $L = \lim_{n \to +\infty} u_n$.
- b) Soit $\lambda > 0$. On suppose que $\forall n \in \mathbb{N}^*, \ a_n = \lambda^{(2^n)}$. Déterminer $\lim_{n \to +\infty} u_n$.
- c) (\bigstar) On suppose $\forall n \in \mathbb{N}^*$, $a_n \geq 1$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est convergente ssi $\ln a_n = O(2^n)$.
- **22)** (X-ESPCI) Soit $f:]0, +\infty[\rightarrow]0, +\infty[$ de classe C^1 telle que $\lim_{x\to+\infty}\frac{f'(x)}{f(x)}=L$, avec L<0.
- a) Donner un exemple d'une telle fonction.
- b) Montrer que la série $\sum_{n\geq 1} f(n)$ converge.
- c) (\bigstar) On pose $R_n = \sum_{k=n}^{+\infty} f(k)$. Montrer que $R_n \sim \frac{1}{1 e^L} f(n)$ lorsque n tend vers $+\infty$.
- 0) (X MP) (\bigstar) Soit F un sous-espace vectoriel de $\mathbb{R}[X]$ de dimension finie $n \geq 1$.

Remarque: F n'admet pas nécessairement de base composée de monômes $X^k.$

Par exemple, $F = \text{Vect}(X^2 + 1, X^4 + 1) = \text{Vect}(X^4 - X^2, X^4 + 1)$.

- a) Montrer qu'il existe une base de F formée de polynômes de même degré.
- b) Montrer qu'il existe une base de F formée de polynômes de degrés deux à deux distincts.