TD Oral 01. Les corrigés sont en fin de sujet

- 1) (extrait oral Centrale) Soit $f:]0, +\infty[\to \mathbb{R}$ une application de classe C^1 .
- a) On suppose $\lim_{x\to+\infty} f'(x) = 0$. La fonction f admet-elle nécessairement une limite en $+\infty$?
- b) On suppose que f admet une limite finie en $+\infty$. A-t-on nécessairement $\lim_{x\to+\infty} f'(x)=0$?
- **2)** (*Mines*) Soit $f:[0,1] \to \mathbb{R}$ de classe C^1 telle que f(0) = f(1) = 0 et $\forall x \in [0,1], |f'(x)| \le 1$.

Montrer que $\left| \int_0^1 f(x) \ dx \right| \le \frac{1}{4}$. Déterminer les cas d'égalité.

3) (Centrale) On considère $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\geq 0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{n+u_n}$.

Montrer que $u_n = \sqrt{n} + \frac{1}{2} + \mathfrak{o}_{+\infty}(1)$ lorsque n tend vers $+\infty$.

- 4) (extrait ENS) Soient $n \in \mathbb{N}^*$ et $x_1, ..., x_n > 0$. On pose $\{x\} = x \lfloor x \rfloor$. Montrer que $\sum_{(i,j)} \left\{ \frac{x_i}{x_j} \right\} < \frac{3}{4}n^2$.
- 5) (X) On considère $f(x) = \sum_{n=1}^{N} a_n \sin(2\pi nx)$, avec $a_N \ge 0$.
- a) On note m_k le nombre de zéros de $f^{(k)}$ sur [0,1[. En utilisant $e^{2\pi ix}$, montrer que $m_k \leq 2N$.
- b) Montrer que $(m_k)_{k\in\mathbb{N}}$ est croissante.
- c) Montrer que $m_k = 2N$ pour k assez grand.
- **6)** Inégalité du réordonnement. Soient $n \in \mathbb{N}^*$ et des réels $a_1 < a_2 < ... < a_n$ et $b_1 < b_2 < ... < b_n$.

Pour toute permutation σ de [1, n], on pose $S(\sigma) = \sum_{i=1}^{n} a_i b_{\sigma(i)}$.

- a) Cas n = 2. Soient des réels a < a' et b < b'. Montrer que ab' + a'b < ab + a'b'.
- b) Montrer qu'il existe une permutation σ telle que $S(s) \leq S(\sigma)$ pour toute permutation s de [1, n].
- c) Déduire de a) que $\sigma=\operatorname{Id}.$

Corrigé

1) a) Contre-exemples: $f(x) = \ln x$ ou bien $f(x) = x^{\alpha}$, avec $0 < \alpha < 1$.

On peut aussi considérer $f(x) = \sin(\ln x)$. On a $\lim_{n \to +\infty} f'(x) = 0$ et f diverge en $+\infty$.

 $Remarque: \text{Si } \lim_{x \to +\infty} f'(x) = 0, \text{ alors par Cesàro } \lim_{x \to +\infty} \frac{1}{x} \int_0^x f'(t) \ dt = 0, \text{ c'est-à-dire } \lim_{x \to +\infty} \frac{f(x)}{x} = 0.$

b) Contre-exemple: $f(x) = \frac{1}{x}\sin(x^2)$. On a $|f(x)| \le \frac{1}{x}$, d'où par pincement, $\lim_{x \to +\infty} f(x) = 0$.

On a $f'(x) = 2\cos(x^2) - \frac{1}{x^2}\sin(x^2)$.

On a $\lim_{n\to+\infty} f'(\sqrt{2n\pi}) = 2$ et $\lim_{n\to+\infty} f'(\sqrt{2n\pi+\pi}) = -2$. Donc f' diverge en $+\infty$.

Remarque: Pour trouver un contre-exemple g > 0, il suffit de considérer $g(x) = f(x) + \frac{2}{x}$.

2) - Par l'IAF appliquée d'une part en 0 et d'autre part en 1, on a : $\forall x \in [0,1], |f(x)| \leq x$ et $|f(x)| \leq (1-x)$.

Donc $\forall x \in [0, 1], |f(x)| \le \varphi(x) = \min(x, 1 - x)$

- On en déduit (faire un schéma) que $\left| \int_0^1 f(x) \ dx \right| \le \int_0^1 |f(x)| \ dx \le \int_0^1 \varphi(x) \ dx = 2 \times \frac{1}{2} \times \left(\frac{1}{2}\right)^2 = \frac{1}{4}$.
- Il y a égalité ssi on a l'égalité (1) : $\left| \int_0^1 f(x) \ dx \right| \le \int_0^1 |f(x)| \ dx$ et l'égalité (2) : $\int_0^1 |f(x)| \ dx = \int_0^1 \varphi(x) \ dx$.

Pour avoir l'égalité $\int_0^1 |f(x)| \ dx = \int_0^1 \varphi(x) \ dx$, il faut que $\forall x \in [0,1], \ |f(x)| = \varphi(x)$

(en effet, $x \mapsto \varphi(x) - |f(x)|$ est continue et positive, et d'intégrale nulle, donc identiquement nulle).

Comme φ ne s'annule pas sur]0,1[, alors par le TVI, f est de signe constant, donc $f=\varphi$ ou $f=-\varphi$.

Dans les deux cas, f n'est pas C^1 . Donc il n'y a pas de cas d'égalité.

Remarque : En revanche, il s'agit de la meilleure majoration possible, car on peut trouver une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ de classe C^1 telles que $|f'_n| \le 1$ et $\lim_{n\to+\infty} \int_0^1 f_n(x) \ dx = \frac{1}{4}$. Ainsi, $\frac{1}{4}$ est une borne sup.

- 3) On procède par évaluations successives de plus en plus fines : un DA de u_n donne un DA de u_{n+1} .
- On a $\sqrt{x} \le 1 + x$, donc $u_{n+1} \le 1 + n + u_n$, donc $u_n = O(n^2)$, donc $u_{n+1} = \sqrt{n + u_n} = O(n)$.
- Donc $u_n = O(n)$. Et $u_{n+1} = \sqrt{n + u_n} = O(\sqrt{n})$. Ainsi, $u_n = O(\sqrt{n})$ et a fortiori $u_n = \mathfrak{o}(n)$.
- D'où $u_{n+1} = \sqrt{n + u_n} = \sqrt{n}\sqrt{1 + \mathfrak{o}(1)} = \sqrt{n}(1 + \mathfrak{o}(1)) = \sqrt{n} + \mathfrak{o}(\sqrt{n})$, c'est-à-dire $u_{n+1} \sim \sqrt{n}$.

Comme $\sqrt{n-1} \sim \sqrt{n}$, alors $u_n \sim \sqrt{n}$. c'est-à-dire $u_n = \sqrt{n} + \mathfrak{o}(\sqrt{n})$.

- Donc
$$u_{n+1} = \sqrt{n + u_n} = \sqrt{n} \left(1 + \frac{1}{\sqrt{n}} + \mathfrak{o} \left(\frac{1}{\sqrt{n}} \right) \right)^{1/2} = \sqrt{n} \left(1 + \frac{1}{2\sqrt{n}} + \mathfrak{o} \left(\frac{1}{\sqrt{n}} \right) \right) = \sqrt{n} + \frac{1}{2} + \mathfrak{o} (1)$$
.

Comme $\sqrt{n-1} = \sqrt{n} + \mathfrak{o}(1)$, alors $u_n = \sqrt{n-1} + \frac{1}{2} + \mathfrak{o}(1) = \sqrt{n} + \frac{1}{2} + \mathfrak{o}(1)$.

- Remarque : On pourrait naturellement poursuivre le DA.
- 4) Pour i = j, $\left\{\frac{x_i}{x_j}\right\} = \{1\} = 0$. Pour i < j, $\left\{\frac{x_i}{x_j}\right\} + \left\{\frac{x_j}{x_i}\right\}$ est de la forme $\{t\} + \left\{\frac{1}{t}\right\}$.

Posons $f(t) = \{t\} + \left\{\frac{1}{t}\right\}$. On a donc $\sum_{(i,j)} \left\{\frac{x_i}{x_j}\right\} = \sum_{i < j} f\left(\frac{x_i}{x_j}\right) \le \frac{1}{2}n(n-1)\sup_{t > 0} f(t)$.

- Pour $t \ge 2$, on a $\left\{\frac{1}{t}\right\} \le \frac{1}{2}$ et comme $\{t\} < 1$, alors $f(t) \le \frac{3}{2}$.
- Pour $1 \le t < 2$, $f(t) = t 1 + \frac{1}{t} \le f(2) 1 = \frac{3}{2}$, car f est croissante sur [1, 2].
- Le cas $0 < t \le 1$ se ramène aux cas précédents.
- 5) On note que la fonction f est 1-périodique. Ainsi, le nombre de zéros de f sur [a, a+1[ne dépend pas de a.
- a) On pose $y = \exp(2\pi i x)$. On a $f(x) = \frac{1}{2\pi i} \sum_{n=1}^{N} a_n (y^n y^{-n}) = \frac{1}{2\pi i y^N} \sum_{n=1}^{N} a_n (y^{N+n} y^{N-n})$.

Donc f(x) = 0 revient à résoudre un polynôme d'inconnue y de degré 2N.

On obtient au plus 2N solutions y, et l'application $[0,1[\to \mathbb{C}\ x\longmapsto y=\exp(2\pi ix)$ est injective.

- b) Soit g de classe C^1 et 1-périodique : g(x+1)=g(x). Alors g' est aussi 1-périodique.
- Si $a_1 < ... < a_r$ sont des zéros de g sur [0,1[, on applique Rolle sur $[a_1,...,a_r,a_1+1]$.

On obtient bien r zéros distincts sur $a_1, a_1 + 1$. Donc $a_1, a_2 + 1$. Donc $a_2, a_3 + 1$.

Ainsi, la dérivée g^\prime admet au moins autant de zéros que g.

c) $f^{(k)}(x)$ est de la forme $A\sin(2\pi Nx + k\pi/2) + g(x)$, avec $A > \sup |g|$ pour k assez grand.

Il existe des points $a_0 < a_1 < ... < a_{2N} = a_0 + 1$ tels que $\forall j \in [0, 2N], \sin(2\pi N a_j + k\pi/2) = (-1)^j$.

On a alors $f^{(k)}(a_j)$ du signe de $(-1)^j$, donc par le TVI, $f^{(k+1)}$ admet 2N zéros sur $[a_0, a_0 + 1]$.

On en conclut que $m_k \geq 2N$ pour k assez grand. On conclut avec a).

- **6)** a) On a ab + a'b' ab' a'b = (a' a)(b' b) > 0.
- b) L'ensemble de permutations est non vide est fini. Donc l'ensemble des S(s) admet un maximum.
- c) Supposons par l'absurde $\sigma \neq \text{Id}$. Alors il existe i < j tels que $\sigma(i) > \sigma(j)$.

Par a), $a_i b_{\sigma(i)} + a_j b_{\sigma(j)} < a_i b_{\sigma(j)} + a_j b_{\sigma(i)}$.

Donc $S(\sigma) < S(\widehat{\sigma})$, où $\widehat{\sigma}$ est la permutation définie par $\left\{ \begin{array}{l} \widehat{\sigma}(i) = \sigma(j) \text{ et } \widehat{\sigma}(j) = \sigma(i) \\ \widehat{\sigma}(k) = \sigma(k) \text{ si } k \notin \{i, j\} \end{array} \right.$

D'où une contradiction. Ainsi, on a bien $\sigma = \operatorname{Id}$.