Oraux. Série nº19. Indications

Familles libres, bases

- 1) Considérer x + y, où $x \in F \setminus G$ et $y \in G \setminus F$.
- **2)** Considérer $f: K^n \to K^p$ $X \longmapsto Y$. La famille $(Y_j)_{1 \le j \le n}$ est génératrice dans K^p .
- 3) Supposons $(P_0,...,P_n)$ liée. Alors l'un des polynôme P_k est cl
 des suivants. Alors $(X-a)^{k+1}$ divise P_k ...
- 4) Supposer $\sum_{k=1}^{n} \lambda_k f_k = 0$. Considérer la relation dans \mathbb{C} , et les valeurs en les ia_k .
- 5) Justifier le paramétrage par x: montrer que l'application linéaire $S \to E$ $(x,y) \longmapsto x$ est bijective.

Dimension et rang

- **6)** a) Montrer que si $B = (a_{ij})_{(i,j) \in I \times J}$ sous-matrice de A, $\operatorname{rg} B \leq \operatorname{rg} A$. Utiliser $C = (a_{ij})_{i \in I, 1 \leq j \leq p}$.
- b) Extraire de A des colonnes formant une base, puis extraire de la sous-matrice obtenue des lignes formant une base.

En déduire l'existence d'une sous-matrice carrée inversible d'ordre $r = \operatorname{rg} A$ (c'est-à-dire de rang r).

- 7) a) Appliquer le th du rang à la restriction de u à $\operatorname{Im} u$. On a en effet $u(\operatorname{Im} u) = \operatorname{Im}(u^2)$.
- b) On a $\text{Im}(u+v) = \{u(x) + v(x), x \in E\} \subset \text{Im}(u) + \text{Im}(v), \text{ donc a fortiori } \text{rg}(u+v) \leq \text{rg } u + \text{rg } v.$

On a alors $\operatorname{rg}(u) = \operatorname{rg}(u+v-v) \le \operatorname{rg}(u+v) + \operatorname{rg}(-v) = \operatorname{rg}(u+v) + \operatorname{rg}(v)$.

De même en inversant les rôles de u et v. Donc $|\operatorname{rg} u - \operatorname{rg} v| \leq \operatorname{rg}(u+v)$.

- 8) Utiliser $\operatorname{rg}(M+N) \leq \operatorname{rg}(M) + \operatorname{rg}(N)$, et en déduire avec soin $\operatorname{rg} A = 2$.
- 9) a) Im $B = \text{Vect}(B_1, ..., B_q) = K^p$; b) Ker $A = \{0\}$ et conclure avec le théorème du rang.
- 10) Montrer que $\operatorname{Vect}(x_i x_j)_{1 \le i < j \le n} = \operatorname{Vect}(x_i x_1)_{2 < i < n}$.
- 11) Commencer par justifier que $\dim(G \cap F) \ge \dim G \operatorname{codim} F$. D'où pour c) : $n \sum_{k=1}^{m} (n d_k) > 0$.
- 12) On trouvera dim G = n + p 1.

Matrices équivalentes

13) On écrit $A = PJ_rQ$. Alors on veut $\forall M \in GL_n(K)$, $\operatorname{tr}(PJ_rQM) = 0$, ce qui équivaut à $\operatorname{tr}(J_rQMP) = 0$, ce qui équivaut à $\forall N \in GL_n(K)$, $\operatorname{tr}(J_rN) = 0$, car N = QMP décrit $GL_n(K)$ lorsque M décrit $GL_n(K)$.

En prenant $N = I_n$, on obtient $tr(J_rN) = r$, donc r = 0 et A est nécessairement la matrice nulle.

14) a) On rappelle que toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ de rang r s'écrit $M = PJ_rQ$, avec $P,Q \in GL_n(\mathbb{R})$.

Théorème du rang

15) Il s'agit ici de l'interpolation d'Hermite (variante de l'interpolation de Lagrange).

L'idée consiste en fait à prouver que $u: \mathbb{R}_3[X] \to \mathbb{R}^4$ $P \longmapsto (P(a), P(b), P'(a), P'(b))$ est bijective.

Or, u est linéaire et injective, donc bijective par dimension, car $\dim \mathbb{R}_3[X] = \dim \mathbb{R}^4$.

Montrons que u est injective : Si u(P) = 0, alors a et b sont racines de P d'ordre ≥ 2 , donc P = 0 (car deg $P \leq 3$).

- 16) a) Considérer le degré.
- b) L'application $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ $P \longmapsto P(X) + P(X+1)$ injective, donc bijective.
- c) On a $\frac{1}{n}P'_n=P_{n-1}$. Considérons $Q_n=n\int_0^x P_{n-1}$. On a donc $P_n=Q_n-\lambda$.

Par intégration, on a $Q_n(x) + Q_n(x+1) - Q_n(1) = x^n$. Donc il faut prendre $\lambda = \frac{1}{2}Q_n(1)$.

Ainsi, on peut construire $(P_n)_{n\in\mathbb{N}}$ par $P_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}^*$, $P_n(x) = n\left(\int_0^x P_{n-1} - \frac{1}{2}\int_0^1 P_{n-1}\right)$.

- 17) a) On a $\operatorname{rg}(f \circ g) = \operatorname{rg} g \dim(\operatorname{Ker} f \cap \operatorname{Im} g)$, donc $\dim(\operatorname{Ker}(f \circ g)) \leq \dim E \operatorname{rg} g + \dim(\operatorname{Ker} f)$.
- b) On a rg f + rg $g \le n$ par $f \circ g = 0$ et rg f + rg $g \ge$ rg(f + g) = n. Donc rg f + rg g = n.
- **18)** a) On a toujours $u(\operatorname{Im} u^p) \subset \operatorname{Im} u^p$.

 $\operatorname{rg}(u^p) = \operatorname{rg}(u^{p+1})$ ssi $u(\operatorname{Im} u^p) = \operatorname{Im} u^p$, donc ssi la restriction $v = u_{|(\operatorname{Im} u^p)}$ de u à $\operatorname{Im} u^p$ est un isomorphisme.

Donc v^m est aussi un isomorphisme pour tout $m \in \mathbb{N}$, et $\operatorname{rg}(v^m) = \operatorname{rg}(u^{p+m}) = \operatorname{rg}(u^p)$.

b) Si on avait $\operatorname{rg} u^2 = \operatorname{rg} u$, alors par a), pour tout $k \ge 1$, $\operatorname{rg}(u^k) = \operatorname{rg}(u)$.

Mais il existe $m \in \mathbb{N}^*$ tel que $u^m = 0$. Donc $\operatorname{rg}(u) = 0$, c'est-à-dire u = 0 (endomorphisme nul).

c) A^2 est nilpotente, donc A est nilpotente. Donc rg A < 3. Mais par b), rg $A > \operatorname{rg} A^2 = 2$...

Formes linéaires

19) Montrer que les $\varphi_k : P \longmapsto P(a_k)$ forment une base du dual de $\mathbb{R}_n[X]$.

Variante: Utiliser la décomposition de P dans la base de Lagrange.

20) a) Considérons l'application $u: E \to K^2$ $x \longmapsto (f(x), g(x))$.

On a Ker $u = \text{Ker } f \cap \text{Ker } g$ de dimension n-2, car sinon, f et g seraient liées.

Donc u est surjective (par le th du rang).

Remarque: On peut montrer qu'on a alors $Vect(x,y) \oplus (Ker f \cap Ker g) = E$.

b) Matriciellement, par le chois d'une base, on identifie E et K^n .

Le système $f_i(e_j) = \delta_{ij}$ s'écrit $AB = I_n$, où les lignes de A correspondent aux f_i et les colonnes de B correspondent aux e_j . Par hypothèse, A est inversible, donc $B = A^{-1}$ convient (et est inversible).

Systèmes linéaires et opérations élémentaires

- 21) Utiliser des opérations par blocs (en prenant Acomme "bloc pivot").
- **22)** Toute solution M est nécessairement de la forme $B + \lambda A$.
- **23)** Considérer X non nul tel que AX = X, et considérer k tel que $|x_k| = \max_{1 \le i \le n} |x_i|$.

Applications linéaires

24) Conseil: (\Rightarrow) Se ramener aux cas des matrices J_r par un choix de bases judicieux.

Endomorphismes

- **25)** a) $p = \min\{n \in \mathbb{N} \mid f^n(x) = 0\}$ partie non vide de \mathbb{N} . On a $p \ge 1$ car $f^0 = \operatorname{Id}$.
- b) Supposons $\lambda_0 x + \lambda_1 f(x) + ... + \lambda_{p-1} f^{p-1}(x) = 0$. Composer par f^{p-1} et en déduire $\lambda_0 = 0$.

Procéder de même pour les autres termes (et montre $\lambda_j = 0$ par récurence forte).

Variante: Considérer $q = \min\{k \mid \lambda_k \neq 0\}$ en supposant les λ_j non tous nuls, et composer par $f_j^{(p-q-1)}$.

c) On a dim Ker f = 1, d'où rg $f^k \ge n - k$, et donc $f^{n-1} \ne 0$. Il existe donc x tel que $f^{n-1}(x) = 0$.

On a aussi $f^n(x) = 0$, donc par b), $(x, f(x), ..., f^{n-1}(x))$ est libre, donc une base de E.

Projecteurs

- **26)** Dans une base adaptée, la matrice de p est J_r , où $r = \operatorname{rg} p$.
- 27) Soient V un ev de dimension finie et $f \in \mathcal{L}(V)$. Montrer que les assertions suivantes sont équivalentes :
- i) Il existe $\pi \in \mathcal{L}(V, \operatorname{Im} f)$ et $i \in \mathcal{L}(\operatorname{Im} f, V)$ tels que $f = i \circ \pi$ et $\pi \circ i = \operatorname{Id}_{\operatorname{Im} f}$.
- ii) $f \circ f = f$.
- **28)** a) card $S_n = n!$
- a) Rappeler le cardinal de S_n . Montrer que pour tout $\tau \in S_n$, $\varphi_{\sigma} : S_n \to S_n$ $\tau \mapsto \tau \circ \sigma$ est bijective.
- b) Soit $(e_1, ..., e_n)$ une base de \mathbb{R}^n . On note f_{σ} l'application linéaire de \mathbb{R}^n telle que $\forall i \in [1, n], f_{\sigma}(e_i) = e_{\sigma(i)}$. Montrer que $p_n = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}$ est un projecteur et donner ses caractéristiques.
- **29)** *Indication*: Pour g, utiliser $p + q p \circ q = \operatorname{Id} (\operatorname{Id} p)(\operatorname{Id} q)$.

Indication: Les sev propres E_0 et E_1 de p sont stables par q, et les restrictions de q sont aussi des projecteurs.

On en déduit qu'on peut codiagonaliser p et q: on se ramène à des matrices diagonales de valeurs propres 0 et 1:

On en déduit que r est la projection sur $(\operatorname{Im} p + \operatorname{Im} q)$ parallèlement à $(\operatorname{Ker} p \cap \operatorname{Ker} q)$.

Une autre méthode consiste à montrer algébriquement que $r^2 = r$ à partir de $p^2 = p$, $q^2 = q$ et pq = qp.

30) Sachant que $\operatorname{rg}(f+g)=n$, montrer que $\operatorname{rg} f+\operatorname{rg} g=n$. On a ainsi $\dim(\operatorname{Im} f+\operatorname{Im} g)=\operatorname{rg} f+\operatorname{rg} g$.

En déduire Im $f \oplus$ Im g = E. En utilisant f + g = Id, montrer que Ker g = Ker(f - Id) = Im f. Conclure.

Espaces de matrices

- **31)** a) Utiliser $E_{ij}E_{kl} = \lambda_{jk}E_{il}$.
- b) Supposons que φ convienne. Alors par a), on obtient $\varphi(E_{ii}) = \varphi(E_{jj})$ et $\varphi(E_{ij}) = 0$ si $i \neq j$. Donc $\varphi = \lambda \operatorname{tr}$.

Remarque: Une autre méthode consiste à chercher φ sous la forme $\varphi(A) = \operatorname{tr}(AM)$.

32) a) On a
$$AE_{ij} = \sum_{k,l} a_{kl} E_{kl} E_{ij} = \sum_{k=1}^{n} a_{ki} E_{kj}$$
.

On choisit de classer les (E_{ij}) selon l'ordre lexicographique (j,i) de sorte que les E_{kj} , avec $k \in \{1,2,..,n\}$, soient consécutifs pour cet ordre.

On obtient $\operatorname{Mat}_{\mathcal{B}}(\phi_A)$ diagonale par blocs, avec n blocs valant $A: \operatorname{Mat}_{\mathcal{B}}(\phi_A) = \begin{pmatrix} A & & & \\ & A & & \\ & & \ddots & \\ & & & A \end{pmatrix}$

A est équivalente à J_r , on obtient $\operatorname{Mat}_{\mathcal{B}}(\phi_A)$ équivalente à une matrice diagonale (en remplaçant A par J_r). Donc $\operatorname{rg} \phi_A = n \operatorname{rg} A$.

b) On a $\det \phi_A = (\det A)^n$. On a $\psi_{A,B} = \phi_A \circ \phi_B'$, où $\phi_B' : M \longmapsto MB$ est, de même, de déterminant $(\det B)^n$. Donc $\det \psi_{A,B} = (\det A)^n (\det B)^n$.

Remarque : On considère $\phi_u: v \longmapsto u \circ v$. On considère \mathcal{B} et C bases de E telles que $\operatorname{Mat}_{\mathcal{B},\mathcal{C}} u = J_r$.

Si $M = \operatorname{Mat}_{\mathcal{B}} v$, on a $J_r M = \operatorname{Mat}_{\mathcal{B},\mathcal{C}} v$. Les applications $v \longmapsto \operatorname{Mat}_{\mathcal{B}} v$ et $v \longmapsto \operatorname{Mat}_{\mathcal{B},\mathcal{C}} v$ sont des isomorphismes.

Donc ϕ_u est de même rang que l'application $M \longmapsto J_r M$. Or, pour $M = \begin{pmatrix} A & C \\ \hline B & D \end{pmatrix}$, $J_r M = \begin{pmatrix} A & C \\ \hline O & O \end{pmatrix}$.

33) On note $u:K^n\to K^n$ l'application linéaire associée à A (on ne considère pas u comme endomorphisme). Considérer une base $\mathcal B$ adaptée à $S\oplus \operatorname{Ker} u=K^n$ et une base $\mathcal C$ adaptée à $\operatorname{Im} u\oplus T=K^n$.

On se ramène ainsi au cas où $A = I_r$. Considérer la forme de $M = \operatorname{Mat}_{C,B} v$ lorsque $v \circ u = 0$ (ce qui équivaut à $\operatorname{Im} u \subset \operatorname{Ker} v$, ssi M admet ses r premières colonnes nulles), resp. lorsque $u \circ v = 0$ (ce qui équivaut à $\operatorname{Im} v \subset \operatorname{Ker} u$, ssi M admet ses r premières lignes nulles), resp. lorsque $u \circ v \circ u = 0$ (ce qui équivaut à M est de la forme $\left(\begin{array}{c|c} O_r & * \\ \hline * & * \end{array}\right)$, car on a $\left(\begin{array}{c|c} I_r & O \\ \hline O & O \end{array}\right) \left(\begin{array}{c|c} M_{11} & M_{12} \\ \hline M_{21} & M_{22} \end{array}\right) \left(\begin{array}{c|c} I_r & O \\ \hline O & O \end{array}\right) = \left(\begin{array}{c|c} M_{11} & O \\ \hline O & O \end{array}\right)$.

Les dimensions des sev $\mathcal{M}_n(K)$ ainsi définies sont donc respectivement n(n-r), (n-r)n et r^2 .