Oraux. Série nº10. Indications

Comparaisons des normes usuelles sur \mathbb{R}^n

1) Cauchy-Schwarz : $|\sum_{i=1}^n a_i x_i| \le ||a||_2 ||x||_2$, avec égalité si a et x colinéaires

 $|\sum_{i=1}^n a_i x_i| \le ||a||_1 || ||_{\infty}$, avec égalité par exemple lorsque $x_i = 1$ si $a_i \ge 0$ et -1 sinon.

 $|\sum_{i=1}^n a_i x_i| \le ||a||_{\infty} ||x||_1$, avec égalité tous les x_i sont nuls sauf un correspondant à $|a_i|$ maximal.

Parties convexes et espaces vectoriels normés

2) a) Existence : $\varphi : y \longmapsto ||x - y||$ est continue (1-lipschitzienne) et atteint son minimum sur le compact K.

 $\textit{Unicit\'e}: \text{Si } y \text{ et } z \text{ distincts convenaient, alors } m = \frac{1}{2}(y+z) \text{ v\'erifierait } \|x-m\| < \|x-y\| = \|x-z\|.$

b) Notons L l'intersection des demi-plans qui contiennent K. Alors L contient K.

Réciproquement, soit x n'appartenant pas à K. On considère $y \in K$ comme au a) et le demi-plan P contenant y et délimité par la médiatrice de [x,y]. Comme K est convexe, on vérifie que $K \subset P$, donc $x \notin L$.

Normes

3) Le système ax + by = cx + dy = 0 implique (x, y) = (0, 0) ssi $ad - bc \neq 0$.

Dans ce cas, N est une norme et la boule unité est un parallélogramme de centre O.

- 4) CNS: $p \ge n$ de sorte que $N(P) = 0 \Rightarrow P = 0$.
- 5) CNS: $\sum a_n$ série à termes strictement positifs et convergente.
- **6)** a) Etudier la fonction $u \longmapsto uv \frac{1}{p}u^p$; prendre $u = x_i/\left\|x\right\|_p$ et $v = y_i/\left\|y\right\|_q$.
- b) La seule difficulté est de prouver l'inégalité triangulaire $\|x+y\|_p \leq \|x\|_p + \|y\|_p$.

Noter que par a), $\sum_{i=1}^{n} |x_i| (|x_i + y_i|)^{p-1} \le ||x||_p (\sum_{i=1}^{n} |x_i + y_i|^p)^{1/q} = ||x||_p ||x + y||_p^{p/q}$, car $p - 1 = \frac{p}{q}$.

En déduire que $\|x+y\|_p^p \le (\|x\|_p + \|y_p\|) \|x+y\|_p^{p/q}$, et conclure.

c) Pour $||y||_q \le 1$, on a $\langle x, y \rangle \le ||x||_p$ par a), avec égalité pour $|x_i y_i| = \frac{|x_i|^p}{||x||_p^{p-1}}$ (on a bien $||y||_q = 1$).

Ouverts et fermés

- 7) a) On peut considérer la norme euclidienne. L'image de $B((x_0, y_0), \varepsilon)$ est $]x_0 \varepsilon, x_0 + \varepsilon[$.
- b) Contre-exemple : Considérer $F = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}.$

Compacité

8) a) Supposons f(a) < f(c) < f(b). Considérer des chemins d'intérieurs disjoints reliant a et b.

b) Posons $A = \{x \mid f(x) \leq c\}$ et $B = \{x \mid f(x) \geq c\}$. Supposer à la fois K et L non bornées.

En considérant des chemins bien choisis, en déduire que $\{x\mid f(x)=c\}$ n'est pas borné.