Oraux. Série nº9. Relations fonctionnelles

- 1) (\clubsuit) a) Montrer que toute fonction continue f vérifiant f(2x) = f(x) est constante.
- b) En déduire les fonctions de classe C^1 vérifiant f(2x) = 2f(x), puis celles vérifiant f(2x) = 2f(x) + 1.
- c) Déterminer les fonctions de classe C^{∞} vérifiant f(2x) = 4f(x) + 1.
- 2) (\$\(\black\)) a) Montrer que les applications C^1 vérifiant f(x+y) = f(x) + f(y) sont les fonctions $x \longmapsto ax$.
- b) Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant f(x+y) = f(x) + f(y) f(x)f(y).
- 3) (\clubsuit) (X) a) Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que f(2x) = 2f(x).
- b) Exprimer th(2x) en fonction de th(x).
- c) Déterminer les fonctions continues $g: \mathbb{R} \to]-1,1[$ dérivables en 0 telles que $g(2x)=\frac{2g(x)}{1+g(x)^2}$.
- d) Déterminer les fonctions continues $g: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que $g(2x) = \frac{2g(x)}{1 g(x)^2}$.
- b) Soient a et b deux réels. Déterminer les $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telles que $\forall x \neq y, f'(ax + by) = \frac{f(y) f(x)}{y x}$.
- **5)** (\clubsuit) (*Mines*) a) Etudier les suites réelles $(u_n)_{n\in\mathbb{N}}$ vérifiant $\forall n\in\mathbb{N}, 6u_{n+2}=u_n+u_{n+1}$.
- b) Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant $f(x,y) = f(y, \frac{1}{6}(x+y))$.