Oraux. Série nº3. Indications

Racines de l'unité

- 1) a) On a clairement $U_3U_4 \subset U_{12}$. Noter ensuite que $\frac{k}{3} \frac{k}{4} = \frac{k}{12}$.
- b) Il suffit que φ soit injective. Or, $\frac{\pi}{6}kp = \frac{\pi}{6}k'q$ $[2\pi] \Leftrightarrow 12$ divise p(k-k'). En déduire la CNS ; pgcd(12,p) = 1.

Géométrie

- **2)** a) $x^2 x + 1$ car $e^{i\pi/3} + e^{-i\pi/3} = 1$ et $e^{i\pi/3}e^{-i\pi/3} = 1$.
- b) Les points (distincts) d'affixes a,b,c forment un triangle équilatéral ssi $\frac{c-a}{b-a}=e^{i\pi/3}$ ou $\frac{c-a}{b-a}=e^{-i\pi/3}$.

Donc par a), ssi $\left(\frac{c-a}{b-a}\right)^2 - \left(\frac{c-a}{b-a}\right) + 1 = 0$, ce qui donne bien en développant $a^2 + b^2 + c^2 = a + b + c$.

Remarque : Il est rassurant de trouver une relation symétrique en a, b, c.

3) a)
$$|1 - \overline{a}z|^2 - |z - a|^2 = 1 + |a|^2 |z|^2 - 2\operatorname{Re}(\overline{a}z) - |z|^2 - |a|^2 + 2\operatorname{Re}(\overline{a}z) = |a|^2 |z|^2 + 1 - |z|^2 - |a|^2$$
.

Donc $|a|^2 |z|^2 + 1 - |z|^2 - |a| = (1 - |z|)(1 - |a|).$

b) On vérifie avec a) que $\varphi(U) \subset U$ et $\varphi(D) \subset D$. Par ailleurs $\varphi(z) = y$ ssi $(z - a) = y(1 - \overline{a}z)$ donc ssi $z = \frac{y - b}{1 - \overline{b}y}$, où b = -a. Donc $y \in U$ lorsque $z \in U$, et de même avec D.

Sommes de nombres complexes

4) Posons
$$\omega = e^{2i\pi/n}$$
. On a $S = \sum_{k=0}^{p-1} (\omega^k)^n = \sum_{k=0}^{p-1} (\omega^n)^p = \frac{\omega^{np}-1}{\omega^n-1}$ si $n \notin p\mathbb{Z}$, et $S = p$ si p divise n .

Remarque culturelle: En fait z^n décrit U_q lorsque z décrit U_p , où $q = \frac{p}{\gcd(p,n)}$.

5) a) Supposons
$$\theta \neq 0$$
 [2π]. En posant $\omega = e^{i\theta}$, on a : $s_n = \frac{\omega^n - 1}{\omega - 1} = \omega^n \frac{1}{\omega - 1} - \frac{1}{\omega - 1}$.

Donc $|s_n| \le \frac{2}{|\omega - 1|} = \frac{1}{|\sin(\theta/2)|}$. Donc $(s_n)_{n \in \mathbb{N}}$ est bornée ssi $\theta \ne 0$ $[2\pi]$.

b) Et $(s_n)_{n\in\mathbb{N}}$ est périodique ssi ω racine de l'unité $\neq 1$.

On se trouve en fait dans un cas particulier de l'exercice précédent, puisque $s_{n+1}=e^{i\theta}s_n+1$.

Inégalité triangulaire

6) a)
$$\left|\sum_{k=1}^{n} z_{k}\right|^{2} = \left(\sum_{k=1}^{n} z_{k}\right) \left(\sum_{k=1}^{n} \overline{z_{k}}\right) = \sum_{k=1}^{n} \left|z_{k}\right|^{2} + 2\sum_{j < k} \operatorname{Re}(z_{j} z_{k}).$$

On a $\operatorname{Re}(z_j z_k) = \rho_j \rho_k \cos(\theta_k - \theta_j) \le \rho_j \rho_k$ avec égalité ssi $\rho_j \rho_k = 0$ ou $\cos(\theta_k - \theta_j) = 1$.

b) Il y a égalité
$$\left|\sum_{k=1}^{n} z_k\right| = \sum_{k=1}^{n} |z_k| \operatorname{ssi} \forall j < k, \operatorname{Re}(z_j z_k) = \rho_j \rho_k.$$

Donc il y a égalité ssi les z_k non nuls ont même argument (c'est-à-dire ssi les points d'affixes z_k appartiennent tous à une même demi-droite issue de O).

On a
$$|P_{n+1} - 1| = |P_n(1 + z_n) - 1| = |(P_n - 1)(1 + z_n) + z_n| \le (Q_n - 1)(1 + |z_n|) + |z_n| = Q_{n+1} - 1$$
.

Noter l'utilité de donner des noms aux objets et de les faire apparaître explictement.

Remarque : On peut développer aussi directement et appliquer l'inégalité triangulaire :

$$\prod_{k=1}^{n} (1+z_k) - 1 = \sum_{I \text{ partie de non vide de } \{1,2,\dots n\}} \prod_{k \in I} z_k.$$

b) Utiliser $\forall x \in \mathbb{R}, x + 1 \le \exp(x)$.

Racines carrées

8) a) On a
$$P(X) = (X - (1+i))^2 + 4i - (1+i)^2 = (X - (1+i))^2 + 2i$$
.

Or, les racines carrées de -2i sont (1-i) et -(1-i).

Donc les racines de P sont (1+i) + (1-i) = 2 et (1+i) - (1-i) = 2i.

b) On note u et -u les racines carrées de $\Delta = \alpha^2 - 4\beta$.

Les racines de P sont $\frac{1}{2}(-\alpha+u)$ et $\frac{1}{2}(-\alpha-u)$. Elles ont même module ssi $\alpha \overline{u} + \overline{\alpha}u = 0$.

(ce qui d'ailleurs équivaut à α et u orthogonaux).

Or, $\alpha \overline{u} + u \overline{\alpha} = 0$ équivaut à $\overline{\alpha} u \in i \mathbb{R}$ c'est-à-dire $(\overline{\alpha} u)^2 \in \mathbb{R}^-$, et on conclut vu que $u^2 = \alpha^2 - 4\beta$.