TD nº6. Formes linéaires. Corrigé

Exercice A. Formes linéaires sur $\mathcal{M}_n(K)$

1. On a
$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij} = \operatorname{tr}(BA).$$

2. Supposons que φ vérifie $\varphi(MN) = \varphi(NM)$.

On a alors en particulier $\varphi(E_{ij}E_{jk}) = \varphi(E_{jk}E_{ij})$, c'est-à-dire $\varphi(E_{ik}) = \varphi(\delta_{ik}E_{jj}) = \delta_{ik}\varphi(E_{jj})$.

En prenant k = i, on obtient $\varphi(E_{ii}) = \varphi(E_{jj})$. Donc il existe λ tel que $\varphi(E_{ii}) = \lambda$ pour tout i.

En prenant $k \neq i$, on obtient $\varphi(E_{ik}) = 0$.

D'où
$$\varphi(M) = (\sum_i \sum_j m_{ij} E_{ij}) = \lambda \sum_i m_{ii} = \lambda \operatorname{tr}(M)$$
. Ainsi, $\varphi = \lambda \operatorname{tr}$.

La réciproque est connue, puisqu'on sait que tr(MN) = tr(NM).

Exercice B. Quadrature par interpolation

1. Première preuve :

Comme dim $\mathcal{L}(E_n, \mathbb{R}) = \dim E_n = n + 1$, il suffit de prouver que $(\varphi_0, ..., \varphi_n)$ est libre.

Supposons $\sum_{i=1}^{n} \lambda_i \varphi_i = 0$.

En prenant les polynôme de Lagrange $Q_0,...,Q_n,$ on a $\lambda_j=\left(\sum_{i=1}^n\lambda_i\varphi_i\right)\left(Q_j\right)=0.$

$Seconde\ preuve:$

La matrice de φ_i dans la base $\mathcal{B} = (1, X; ...; X^n)$ est la matrice ligne $L_i = (1 \ x_i \ x_i^2 \ ... \ x_i^n)$.

La matrice de van der Monde $(x_i^{j-1})_{1 \leq j \leq n, 0 \leq j \leq n}$ est inversible

Donc la famille $(L_0, ..., L_n)$ est une base de l'espace des matrices lignes.

Donc $(\varphi_0, ..., \varphi_n)$ est une base (car l'application qui à φ associe L est un ismorphisme).

2. Première preuve : Les polynômes de Lagrange forment une base de E_n , et on a $P(x) = \sum_{i=0}^n P(x_i)Q_i(x)$.

Donc, par linéarité de P, $\phi(P) = \sum_{i=0}^{n} \lambda_i P(x_i)$, avec $\lambda_i = \phi(P_i)$. D'où l'existence.

Réciproquement, supposons $\phi(P) = \sum_{i=0}^{n} \lambda_i P(x_i)$. En prenant $P = P_i$, on retrouve $\lambda_i = L(P_i)$. D'où l'unicité.

Seconde preuve : On utilise 1) : $(\varphi_0, ..., \varphi_n)$ est une base de l'espace des formes linéaires sur E_n .

Ainsi la forme linéaire ϕ se décompose de façon unique comme combinaison linéaire des φ_i .

3. a) Considérons $\psi(P) = \sum_{i=0}^{n} \lambda_{n-i} P(x_i)$, et on va montrer que $\phi(P) = \psi(P)$, ce qui par unicité de la représentation, permet d'en déduire $\lambda_{n-i} = \lambda_i$.

On a
$$\psi(P) = \sum_{i=0}^{n} \lambda_{n-i} P(x_i) = \sum_{i=0}^{n} \lambda_i P(x_{n-i}) = \sum_{i=0}^{n} \lambda_i P(-x_i) = \sum_{i=0}^{n} \lambda_i Q(x_i)$$
, où $Q(x) = P(-x)$.

On a donc $\psi(P) = \phi(Q) = \int_{-1}^{1} Q(x)dx$. Or, $\int_{-1}^{1} Q(x)dx = \int_{-1}^{1} P(x)dx$. D'où le résultat.

b) On veut montrer que $\int_{-1}^{1} P(x) dx = \sum_{i=0}^{n} \lambda_{i} P(x_{i})$ est vraie pour tout $P \in E_{n+1}$.

La propriété est vraie pour tout $P \in E_n$.

Donc, par linéarité des deux membres, il suffit de vérifier la linéarité pour $P(x) = x^{n+1}$.

Or, on a $\int_{-1}^{1} x^{n+1} dx = 0$, car n est impair.

Donc il suffit de vérifier que pour $P(x) = x^{n+1}$, on a $\sum_{i=0}^{n} \lambda_i P(x_i) = 0$.

Or, P est impair, $\sum_{i=0}^{n} \lambda_i P(x_i) = \sum_{i=0}^{n} \lambda_{n-i} P(x_{n-i}) = \sum_{i=0}^{n} \lambda_{n-i} P(-x_i) = -\sum_{i=0}^{n} \lambda_{n-i} P(x_i) = -\sum_{i=0}^{n} \lambda_i P(x_i)$.

D'où le résultat.