TD n°5. Corrigé

1) On a
$$\left(1+\frac{1}{n}\right)^n = \exp\left(n\ln\left(1+\frac{1}{n}\right)\right) = e\exp\left(-\frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right) = e - \frac{e}{2n} + O\left(\frac{1}{n^2}\right)$$
.

Donc
$$a_n = \frac{(-1)^n e}{2n} + \varepsilon_n$$
, avec $\varepsilon_n = O\left(\frac{1}{n^2}\right)$. Donc $\sum a_n$ ev comme somme de séries convergentes.

2) Exemple :
$$a_n = \frac{1}{\sqrt{n}} + \frac{(-1)^n}{n}$$
.

3) Avec
$$a_n = \exp(-\sqrt{\ln n})$$
, on a $na_n = \exp(\ln n - \sqrt{\ln n}) \to +\infty$.

Donc
$$a_n \ge \frac{1}{n}$$
 pour n assez grand. Et $\sum a_n$ diverge.

4)
$$(-1)^{n(n-1)/2}$$
 vaut 1 ssi 4 divise $n(n-1)$, donc ssi $n \equiv 0$ ou 1 modulo 4.

Donc les
$$(-1)^{n(n-1)/2}$$
 valent $1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, \dots$

Première méthode:

Pour conclure, on considère la série comme somme des deux séries alternées $\sum a_{2k+1}$ et $\sum a_{2k}$

En effet,
$$a_{2k} = \frac{(-1)^k}{2k}$$
 et $a_{2k+1} = \frac{(-1)^k}{2k+1}$. Ainsi, les séries $\sum a_{2k+1}$ et $\sum a_{2k}$ vérifient le CSSA.

On conclut avec
$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{\lfloor N/2 \rfloor} a_{2k} + \sum_{n=1}^{\lfloor (N-1)/2 \rfloor} a_{2k+1}$$
.

Seconde méthode:

On a
$$S_{2n+1} = \sum_{k=1}^{2n+1} a_k = 1 + \sum_{k=1}^{n} (-1)^k \left(\frac{1}{2k} + \frac{1}{2k+1} \right)$$
, donc (S_{2n+1}) converge (par le CSSA).

D'autre part, $S_{2n} - S_{2n+1}$ tend vers 0, donc (S_{2n}) converge vers la même limite. Donc (S_n) converge.

5) a) Posons
$$v_n = \frac{u_{n+1}}{S_n}$$
. On a $\lim_{n \to +\infty} S_n = L > 0$, donc $v_n = O(u_{n+1})$ et $\sum v_n$ converge.

b) On a
$$\lim_{n\to+\infty} S_n = +\infty$$
. On a $v_n = \frac{S_{n+1} - S_n}{S_n}$.

On a
$$v_n = \frac{u_{n+1}}{S_n} = \frac{S_{n+1} - S_n}{S_n} = \int_{S_n}^{S_{n+1}} \frac{dt}{S_n} \ge \int_{S_n}^{S_{n+1}} \frac{dt}{t}.$$

Donc
$$\sum_{k=1}^{+\infty} v_n \ge \sum_{n=0}^{+\infty} \int_{S_n}^{S_{n+1}} \frac{dt}{t} = \int_{S_0}^{+\infty} \frac{dt}{t} = +\infty$$
. Donc $\sum v_n$ diverge.

c) Si
$$S_{n+1} \sim S_n$$
, alors $\frac{u_{n+1}}{S_n} \sim \frac{u_{n+1}}{S_{n+1}}$, donc par b), $\sum \frac{u_{n+1}}{S_{n+1}}$ diverge, c'est-à-dire $\sum \frac{u_n}{S_n}$ diverge. Sinon, $\frac{u_n}{S_n} = \frac{S_n - S_{n-1}}{S_n} = 1 - \frac{S_{n-1}}{S_n}$ ne converge pas vers 0, donc la série $\sum \frac{u_n}{S_n}$ diverge.

Sinon,
$$\frac{u_n}{S_n} = \frac{S_n - S_{n-1}}{S_n} = 1 - \frac{S_{n-1}}{S_n}$$
 ne converge pas vers 0, donc la série $\sum \frac{u_n}{S_n}$ diverge.

6) a) On pourrait comparer avec une intégrale, mais un encadrement grossier suffit.

Il y a
$$(p+1)^2 - p^2 = 2p + 1$$
 termes dans la somme.

On a donc
$$\frac{2p+1}{p^2} \le u_p \le \frac{2p+1}{(p+1)^2}$$
. Les deux encadrants sont de la forme $\frac{2}{p} + O\left(\frac{1}{p^2}\right)$.

b) On a
$$\lfloor \sqrt{n} \rfloor = p \text{ ssi } p^2 \le n \le (p+1)^2 - 1 = p^2 + 2p$$
.

Posons
$$S_n = \sum_{k=1}^n \frac{(-1)^{\lfloor \sqrt{k} \rfloor}}{k}$$
 et $T_p = \sum_{j=1}^p (-1)^j u_j$.

Pour
$$n = (p+1)^2 - 1$$
, on a (en regroupant) : $S_n = \sum_{j=1}^p \sum_{k=j^2}^{(j+1)^2 - 1} \frac{(-1)^j}{k} = \sum_{j=1}^p (-1)^j u_j = T_p$.

Par a), la série
$$\sum (-1)^p u_p$$
 cv, comme somme de deux séries cv, car $u_p = \frac{2}{p} + O\left(\frac{1}{p^2}\right)$.

Pour tout
$$n \in \mathbb{N}^*$$
, S_n est compris entre T_p et T_{p+1} , où $p = \lfloor \sqrt{n} \rfloor$. Donc $(S_n)_{n \in \mathbb{N}^*}$ converge.