Suites extraites

1. Suites extraites et valeurs d'adhérence

a) Def: On dit que $(v_n)_{n\in\mathbb{N}}$ est extraite de $(u_n)_{n\in\mathbb{N}}$ ssi il existe $\varphi:\mathbb{N}\to\mathbb{N}$ strictement croissante telle que

$$\forall k \in \mathbb{N}, v_k = u_{\varphi(k)}$$

Remarque: Une suite extraite d'une suite extraite est une suite extraite: $v_{\psi(j)} = u_{\varphi(\psi(j))}$, avec $n = \varphi(k)$ et $k = \psi(j)$.

b) Suites extraites d'une suite convergente.

Prop: Toute suite extraite d'une suite convergente converge vers la même limite.

Preuve: Résulte de $\varphi(k) \geq k$ et de la composition des limites (puisque $\lim_{k \to +\infty} \varphi(k) = +\infty$).

Exercice: Si $(u_n)_{n\in\mathbb{N}}$, $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent, alors $(u_n)_{n\in\mathbb{N}}$ converge.

c) Suites extraites d'une suite non bornée.

Prop: Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Les assertions suivantes sont équivalentes :

- (i) $(u_n)_{n\in\mathbb{N}}$ n'est pas bornée
- (ii) Il existe une suite extraite $(u_{\varphi(k)})_{n\in\mathbb{N}}$ telle que $\lim_{k\to+\infty} |u_{\varphi(k)}| = +\infty$.

Preuve: (i) implique (ii): Soit $k \in \mathbb{N}$. Supposons définis $\varphi(0) < \varphi(1) < ... < \varphi(k-1)$ tels que $\forall j < k, u_{\varphi(j)} \geq j$.

Comme $(u_n)_{n\in\mathbb{N}}$ n'est pas bornée, il existe une infinité d'entiers n tels que $|u_k| \geq k$.

En particulier, il existe $n > \varphi(k)$ tel que $|u_n| \ge k$. On pose $\varphi(k) = n$.

On construit ainsi une suite $(u_{\varphi(k)})_{n\in\mathbb{N}}$ telle que $|u_{\varphi(k)}| \geq \alpha_k$.

Remarque: De même, une partie A n'est pas majorée ssi il existe une suite d'éléments de A tendant vers $+\infty$.

2. Valeurs d'ahérence (HP)

- a) Def: On dit que λ est une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$ ssi λ est limite d'une suite extraite de $(u_n)_{n\in\mathbb{N}}$.
- b) Caractérisation: Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $\lambda\in\mathbb{R}$. Les assertions suivantes sont équivalentes:
- (i) λ est valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$
- (ii) $\forall \varepsilon > 0$, $\{n \in \mathbb{N} \mid u_n \in [\lambda \varepsilon, \lambda + \varepsilon]\}$ est infini.
- (iii) $\forall \varepsilon > 0, \ \forall n_0 \in \mathbb{N}, \ \exists \ n \ge n_0, \ u_n \in [\lambda \varepsilon, \lambda + \varepsilon] \}.$

Preuve: (ii) équivaut à (iii), car les parties de N infinies sont exactement les parties non majorées.

Supposons (i), c'est-à-dire que λ est valeur d'adhérence. On a ainsi $\lambda = \lim_{n \to +\infty} u_{\varphi(n)}$.

Soit $\varepsilon > 0$. Il existe $n_0 \in \mathbb{N}$ tel que $\forall k \geq k_0, |u_{\varphi(k)} - \lambda| \leq \varepsilon$.

Donc $\{n \in \mathbb{N} \mid u_n \in [\lambda - \varepsilon, \lambda + \varepsilon]\}$ contient $\{\varphi(k), k \geq n_0\}$, donc est infini.

Réciproquement, supposons (ii).

On prend $\varphi(0) = 0$. Soit $n \in \mathbb{N}^*$. On suppose construit $\varphi(k)$. Il existe $n > \varphi(k-1)$ tel que $u_n \in [\lambda - \frac{1}{k}, \lambda + \frac{1}{k}]$.

On construit ainsi une suite $(u_{\varphi(k)})_{k\in\mathbb{N}}$ telle que $\forall k\in\mathbb{N}^*, |u_{\varphi(k)}-\lambda|\leq \frac{1}{k}$. D'où (i).

b) Limite supérieure et limite inférieure.

On pose $\alpha_n = \sup_{k > n} u_k$. La suite $(\alpha_n)_{n \in \mathbb{N}}$ décroît donc il existe $\alpha = \lim_{n \to +\infty} \alpha_n \in \mathbb{R} \cup \{\pm \infty\}$, noté $\limsup u_n$.

Prop: $\limsup u_n$ est la plus grande valeur d'ahérence de $(u_n)_{n\in\mathbb{N}}$

Preuve: On a $\forall k \geq n, u_k \leq \alpha_n$ et $\forall \varepsilon > 0, \exists k \geq n, \alpha_n - \varepsilon \leq u_k \leq \alpha_n$.

Comme pour n assez grand, on a $|\alpha_n - \alpha| \le \varepsilon$, alors $\{n \in \mathbb{N} \mid u_n \in [\alpha - 2\varepsilon, \alpha + \varepsilon]\}$ n'est pas majorée.

Donc α est valeur d'adhérence. D'autre part, $\lim_{n\to+\infty}u_{\varphi(n)}=\lambda$, alors $\alpha_n\geq u_{\varphi(n)}$, donc $\alpha\geq\lambda$.

 $Prop: (u_n)_{n\in\mathbb{N}}$ admet une limite ssi $\limsup u_n = \liminf u_n$.

Preuve: Le sens réciproque est évident. Supposons $\alpha = \beta$, c'est-à-dire $\limsup u_n = \liminf u_n$.

On a $\beta_n \leq u_n \leq \alpha_n$. Par pincement, $(u_n)_{n \in \mathbb{N}}$ converge vers $\alpha = \beta$.

c) Complément : L'ensemble Δ des valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ est $\Delta=\cap_{p\in\mathbb{N}}\overline{\{u_n,n\geq p\}}$.

En effet, il résulte de la propriété que toute valeur d'adhérence λ appartient à $\overline{\{u_n, n \geq p\}}$ pour tout p.

Récirpoquement, supposons que $\lambda \in \bigcap_{p \in \mathbb{N}} \overline{\{u_n, n \geq p\}}$.

Soit $\varepsilon > 0$ et $p \in \mathbb{N}$. Alors $\lambda \in \overline{\{u_n, n \geq p\}}$, donc il existe $n \geq p$ tel que $|u_n - \lambda| \leq \varepsilon$.

Remarque: Comme une intersection de fermés est un fermé, alors Δ est un fermé.

3. Compacité (hp)

a) Prop: De toute suite réelle bornée, on peut extraire une suite convergente.

 $Preuve : Soit (u_n)_{n \in \mathbb{N}}$ une suite réelle. Il existe un segment [a, b] contenant tous les termes de la suite $(u_n)_{n \in \mathbb{N}}$.

On coupe $[a, b] = I_0$ en deux segments de même longueur. Au moins une des deux moitiés contient une infinité de termes de la suite. On la note I_1 . Autrement dit, $\{n \in \mathbb{N} \mid u_n \in I_1\}$ est infini.

On construit ainsi une suite $(I_n)_{n\in\mathbb{N}}$ dichotomique de segments emboités telle que I_n est de longueur $\frac{1}{2^n}(b-a)$.

Par le théorème sur les suites adjacentes, l'intersection de $(I_n)_{n\in\mathbb{N}}$ est un singleton $\{\lambda\}$.

Alors, pour tout $\varepsilon > 0$, il existe $n \in \mathbb{N}$ tel que $\frac{1}{2^n}(b-a) \leq \varepsilon$, donc $\{n \in \mathbb{N} \mid u_n \in [\lambda - \varepsilon, \lambda + \varepsilon]\}$ est infini.

On en conclut que λ est valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$.

b) Extension dans les evn de dimension finie : De toute suite de \mathbb{R}^p bornée, on peut extraire une suite convergente.

Preuve: On le prouve pour p=2 (procédé identique pour p quelconque).

Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite bornée, c'est-à-dire $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ bornées.

Il existe une suite extraite $(x_{\varphi(k)})_{k\in\mathbb{N}}$ convergente.

La suite $(y_{\varphi(k)})_{k\in\mathbb{N}}$ est bornée. On peut en extraire une suite $(y_{\varphi(\psi(j))})_{j\in\mathbb{N}}$ convergente.

Et la suite $(x_{\varphi(\psi(j))})_{j\in\mathbb{N}}$ converge comme suite extraite d'une suite convergente. Donc $\varphi\circ\psi:\mathbb{N}\to\mathbb{N}$ convient.

c) Corollaire (propriété caractéristique des compacts) : Soit une partie compacte K de \mathbb{R}^p .

De toute suite d'éléments de K, on peut extraire une suite convergente qui converge dans K.