Dénombrement

1) Formules usuelles

- a) Cardinal d'un produit cartésien
- $\operatorname{card}(E_1 \times ... \times E_p) = \operatorname{card}(E_1) \times \operatorname{card}(E_2) \times ... \operatorname{card}(E_p)$
- nombre de p-uplets de [1, n]
- nombre d'applications de [1, p] dans [1, n]: $\operatorname{card}(\mathcal{F}(F, E)) = (\operatorname{card} E)^{\operatorname{card} F}$
- nombre de parties de E : $\operatorname{card}(P(E)) = 2^{\operatorname{card} E}$
- nombre de tirages ordonnés et avec remise de p boules numérotées dans une urne de n boules
- nombre de placements de p boules numérotées dans n boîtes
- b) Arrangements $A_{p,n}$
- nombre de p-uplets injectifs de E: il y a n(n-1)...(n-p+1) p-uplets injectifs
- nombre de tirages ordonnés et sans remise de p boules numérotées dans une urne contenant n boules
- nombre de placements de p boules numérotées dans n boîtes contenant au plus une boule
- c) Permutations n!
- nombre de permutations de [1, n]
- nombre de numérotations des éléments d'un ensemble de cardinal n
- d) Combinaisons $\binom{n}{n}$
- nombre de parties de cardinal p dans un ensemble E de cardinal n
- nombre de façons de choisir p entiers distincts dans [1, n]
- tirages simultanés de p boules numérotées dans un urne contenant n boules
- tirages non ordonnés et sans remise de p boules numérotées dans une urne contenant n boules
- nombre de n-uplets $(x_1,...,x_n)\in\{0,1\}$ vérifiant $x_1+...+x_n=p$
- nombre d'applications strictement croissantes de [1, p] dans [1, n].
- e) Combinaisons $\binom{n+p-1}{p}$
- nombre de tirages non ordonnés et avec remise de p boules dans une urne contenant n boules
- nombre de placements de p boules indiscernables dans n boîtes
- nombre de $n\text{-uplets }(x_1,...,x_p)\in\mathbb{N}^p$ vérifiant $x_1+...+x_p=n$
- nombre d'applications croissantes de [1, p] dans [1, n].

2) Méthodes de dénombrement et exemples

Pour déterminer le cardinal d'un ensemble fini, il y a plusieurs outils non exclusifs les uns des autres

- on explicite une bijection avec un ensemble dont on connait le cardinal
- on partitionne l'ensemble en des parties dont on connaît le cardinal.
- principe des bergers
- a) Exo: On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de v.a. indépendantes et de loi de Bernoulli de paramètre p.

On note N_r l'indice de la r-ième variable valant 1. Calculer $P(N_r = n)$.

Solution: On a $N_r = n$ lorsque $X_n = 1$ et que exactement (r-1) valeurs parmi $X_1, ..., X_{n-1}$ valent 1.

Il y a $\binom{n-1}{r-1}$ configurations possibles. Chacune de ces configurations a une probabilité $p^r(1-p)^{n-r}$.

Donc $P(N_r = k) = \binom{k-1}{r-1} p^r (1-p)^{n-r}$.

b) Exo: Déterùiner le nombre de surjections de $[\![1,n]\!]$ dans $[\![1,n-1]\!]$.

Solution : On choisit l'unique élément de [1, n-1] admettant deux antécédents, puis les deux antécédents, puis la bijection entre les éléments restants.

Donc le nombre de surjections vaut $n \times \binom{n}{2} \times (n-2)! = \frac{1}{2} n n!$

c) Exo: Soit $r \in \mathbb{N}^*$. Soient $n \in \mathbb{N}$ et des entiers $p_1, ..., p_r$ tels que $n = p_1 + ... + p_r$.

Montrer que le nombre de partitions ordonnées en r parties de cardinaux $p_1, ..., p_r$ vaut $\frac{n!}{p_1!...p_r!}$. Solution : Il y a

 $\binom{n}{p_1}$ choix, $\binom{n-p_1}{p_2}$ pour la deuxième, etc.

Donc au total $\binom{n}{p_1}\binom{n-p_1}{p_2}\binom{n-p_1-p_2}{p_2}...\binom{p_r}{p_r} = \frac{n!}{p_1!...p_r!}$ partitions ordonnées.

d) Exo: Déterminer le nombre d_n de façons de partionner un ensemble de n=2m éléments en un ensemble de m paires.

Solution: On compte le nombre de partitions ordonnées, puis on divise par m!

Il s'agit donc de $\frac{1}{m!} \binom{n}{2} \binom{n-2}{2} \binom{n-4}{2} ... \binom{2}{2} = \frac{(2m)!}{2^m m!}$.

e) Exo: Soit $n \in \mathbb{N}$. On considère les décompositions $n = a_1 + ... + a_r$, avec $r \in \mathbb{N}$ et $(a_1, ..., a_r) \in (\mathbb{N}^*)^r$.

On a $c_0 = 1$. Montrer que pour $n \in \mathbb{N}^*$, le nombre de décompositions vaut $c_n = 2^{n-1}$.

Solution: En choisissant $a_r = k \in [1, n]$, on se ramène à une décomposition de $n - a_r$.

Donc pour $n \ge 1$, $c_n = \sum_{k=1}^n c_{n-k}$. Pour $n \ge 2$, on a donc $c_n = c_{n-1} + \sum_{k=1}^{n-1} c_{n-1-k} = 2c_{n-1}$.

Comme $c_1 = 1$, on obtient $c_n = 2^{n-1}$ par récurrence immédiate.

Autre argument : En associant à chaque décomposition $X = \{a_1, a_1 + a_2, ..., a_1 + ... + a_{r-1}\}$, on obtient une bijection de l'ensemble des décompositions sur l'ensemble des parties de [1, n-1].

La bijection réciproque associé à $X = \{x_1, ..., x_p\}$ la décomposition $n = x_1 + (x_2 - x_1) + ... + (n - x_p)$.

f) Exo: On note a_n le nombre de parties de [1, n] ne contenant pas deux éléments consécutifs.

Montrer que $(a_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence d'ordre 2 à coefficient constants.

Solution : On note E_n l'ensemble des parties de [1,n] ne contenant pas deux éléments consécutifs.

On a $E_n = E'_n \sqcup E''_n$ en distinguant les parties qui contiennent n et celles qui ne contiennent pas n.

 E'_n est l'ensemble des parties de la forme $A \sqcup \{n\}$, où $A \in E_{n-2}$. Et on a $E''_n = E_{n-1}$.

On obtient donc $a_n = a_{n-1} + a_{n-2}$. On a aussi $a_0 = a_1 = 1$.