Théorème de convergence dominée pour les séries

Remarque : La propriété se déduit du théorème de convergence dominée en l'appliquant aux fonctions en escaliers associées aux séries. Mais il est simple de le prouver directement :

1) Soit pour tout $p \in \mathbb{N}$, une série $\sum_{n \in \mathbb{N}} a_{n,p}$.

On suppose que pour tout $n \in \mathbb{N}$, il existe $\lambda_n = \lim_{p \to +\infty} a_{n,p}$

On suppose qu'il existe une série **convergente** $\sum_{n=0}^{+\infty} b_n$ à termes positifs telle que

$$\forall p \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad |a_{n,p}| \le b_n$$

- a) Montrer que pour tout $p \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}} a_{n,p}$ converge et montrer que $\sum_{n \in \mathbb{N}} \lambda_n$ converge.
- b) Soient $N \in \mathbb{N}$ et $p \in \mathbb{N}$. Montrer que $\left|\sum_{n=0}^{+\infty} a_{n,p} \sum_{n=0}^{+\infty} \lambda_n\right| \le \sum_{n=0}^{N} |a_{n,p} \lambda_n| + 2\sum_{n=N+1}^{+\infty} b_n$.
- c) En déduire $\lim_{p\to+\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} \lambda_n$
- 2) On considère pour tout $p \in \mathbb{N}^*$, $S_p = \sum_{n=0}^p \left(1 \frac{n}{p}\right)^p$. En utilisant 1), déterminer $\lim_{p \to +\infty} S_p$.
- 3) Proposer un contre-exemple si on ne suppose pas l'hypothèse de domination uniforme vérifiée, mais seulement que les séries $\sum_{n\in\mathbb{N}} a_{n,p}$ convergent (où $p\in\mathbb{N}$).

Théorème de convergence dominée pour les séries. Corrigé

1) a) Par comparaison, $\sum_{n\in\mathbb{N}} a_{n,p}$ est absolument convergente.

De même pour la série $\sum_{n\in\mathbb{N}} \lambda_n$, car par passage à la limite, $|\lambda_n| \leq b_n$.

b)
$$\left|\sum_{n=0}^{+\infty} a_{n,p} - \sum_{n=0}^{+\infty} \lambda_n\right| \le \sum_{n=0}^{+\infty} |a_{n,p} - \lambda_n| = \sum_{n=0}^{N} |a_{n,p} - \lambda_n| + \sum_{n=N+1}^{+\infty} |a_{n,p} - \lambda_n|$$
.

On conclut avec a), car $|a_{n,p} - \lambda_n| \le 2b_n$.

c) Soit $\varepsilon > 0$. Il existe N tel que $\sum_{n=N+1}^{+\infty} b_n \leq \frac{\varepsilon}{2}$.

Puis, par linéarité de la limite, on a $\lim_{p\to+\infty}\sum_{n=0}^N|a_{n,p}-\lambda_n|=0$.

Donc pour $p \ge p_0$ assez grand, $\sum_{n=0}^{N} |a_{n,p} - \lambda_n| \le \frac{\varepsilon}{2}$.

D'où par b), $\forall p \geq p_0$, $\left|\sum_{n=0}^{+\infty} a_{n,p} - \sum_{n=0}^{+\infty} \lambda_n\right| \leq \varepsilon$.

On en conclut $\lim_{p\to+\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} \lambda_n$.

2) Pour tout $p \in \mathbb{N}$, on définit $\forall n \in \mathbb{N}$, $a_{n,p} = \left(1 - \frac{n}{p}\right)^p$ si $n \leq p$, et $a_{n,p} = 0$ si n > p.

On a bien $\forall n \in \mathbb{N}$, $\lim_{p \to +\infty} a_{n,p} = e^{-n}$, car $a_{n,p} = \left(1 - \frac{n}{p}\right)^p$ pour p assez grand.

D'autre part, on a $\forall p \in \mathbb{N}, |a_{n,p}| \leq b_n = e^{-n}$, et $\sum_{n \in \mathbb{N}} b_n$ converge.

Par 1), on a
$$\lim_{p\to+\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} e^{-n} = \frac{1}{1-e^{-1}} = \frac{e}{e-1}$$
.

3) Pour tout $p \in \mathbb{N}$, on définit $\forall n \in \mathbb{N}, a_{n,p} = 1 \text{ si } n = p, \text{ et } 0 \text{ sinon.}$

On a $\forall n \in \mathbb{N}$, $\lim_{n \to +\infty} a_{n,p} = 0$.

On a $\forall p \in \mathbb{N}$, $\sum_{n=0}^{+\infty} a_{n,p} = 1$ mais $\sum_{n=0}^{+\infty} (\lim_{p \to +\infty} a_{n,p}) = 0$.