TD entraı̂nement $n^{\circ}6$

Exercice (extrait Mines PC)

Soient un espace probabilisé (Ω, \mathcal{A}, P) et une famille $(X_x)_{x>0}$ de variables aléatoires à valeurs entières telle que pour tout x>0, la variables aléatoire X_x suit la loi de Poisson de paramètre x.

Dans tout le sujet, r désigne un réel positif non nul : r > 0. On pose $\forall x > 0, Z_x = \frac{X_x}{x}$.

Pour $N \in \mathbb{N}$, on pose $Y_{x,N} = X_x(X_x - 1)...(X_x - N + 1) = \prod_{k=0}^{N-1} (X_x - k)$. En particulier, $Y_{x,0} = 1$.

- 1. [0.5 pt] On pose $S_r(z) = \sum_{n=1}^{+\infty} \frac{n^r}{n!} z^n$. Déterminer le rayon de convergence de cette série entière.
- **2.** [1 pt] Montrer que $(Z_x)^r$ est d'espérance finie et exprimer $E((Z_x)^r)$ en fonction de $S_r(x)$.
- 3. [1.5 pt] Rappeler sans justification l'espérance et la variance de X_x .

En utilisant l'inégalité de Bienaymé-Tchebychev, montrer : $\lim_{x\to +\infty} P\left(|Z_x-1|\geq x^{-1/3}\right)=0$

4. a) [1 pt] Montrer que pour tout x > 1, on a

$$(1 - x^{-1/3})^r P(Z_x \ge 1 - x^{-1/3}) \le E((Z_x)^r)$$

b) [1.5 pt] Montrer par ailleurs que

$$\lim_{x \to +\infty} (1 - x^{-1/3})^r P(Z_x \ge 1 - x^{-1/3}) = 1$$

5. [2 pts] Montrer que $Y_{x,N}$ est d'espérance finie et que $E(Y_{x,N}) = x^N$.

Remarque : Il est conseillé de faire intervenir la série génératrice $G_{X_x}(t)$ de X_x .

6. a) [1.5 pt] Montrer qu'il existe une famille $(a_k)_{0 \le k \le N}$ de réels tels que

$$a_N = 1$$
 et $\forall x > 0, (X_x)^N = \sum_{k=0}^N a_k Y_{x,k}$

Indication: Faire intervenir les polynômes $H_j(Z) = \prod_{k=0}^{j-1} (Z-k)$ pour $j \in \mathbb{N}$ et d'indéterminée Z.

- b) [1 pt] Montrer que $\lim_{x\to+\infty} E((Z_x)^N) = 1$.
- **7.** [2 pts]
- a) On pose $N = \lfloor r \rfloor$ et s = r N. Montrer que $\forall t \in \mathbb{R}^+, t^s \leq s(t 1) + 1$.
- b) En déduire que $\forall x > 0$, $(Z_x)^r \leq (1-s)(Z_x)^N + s(Z_x)^{N+1}$.
- 8. [2 pts] Montrer que $\lim_{x\to+\infty} E((Z_x)^r) = 1$ et en déduire un équivalent de $S_r(x)$ lorsque $x\to+\infty$.