Composition n°2. Durée 3 heures

Exercice A. Estimation d'une somme (début du sujet Mines PC 2017)

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose

$$T_n(x) = \sum_{k=0}^{n} \frac{n^k x^k}{k!}$$
 et $R_n(x) = e^{nx} - T_n(x)$

1) $T_n(x)$ est le polynôme de Taylor d'ordre n en 0 de la fonction $f(x) = e^{nx}$.

En appliquant la formule de Taylor-Lagrange avec reste intégral, montrer que

$$R_n(x) = e^{nx} \frac{n^{n+1}}{n!} \int_0^x (ue^{-u})^n du$$

2) On pose $a_n = \frac{n^{n+1}}{n!}$.

Déterminer $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n}$. En déduire que $a_n=O_{+\infty}(y^n)$ pour tout réel y>e.

Remarque: On ne suppose pas ici connue la formule de Stirling.

- 3) On suppose 0 < x < 1. On pose $M(x) = \sup_{u \in [0,x]} (ue^{-u})$.
- a) Montrer que $M(x) < e^{-1}$.
- b) Montrer que $T_n(x) \sim e^{nx}$ lorsque $n \to +\infty$.

Exercice B. Calcul de l'intégrale de Dirichlet

- 1) Montrer que la fonction $\varphi: \left]0, \frac{\pi}{2}\right] \to \mathbb{R} \ t \longmapsto \frac{1}{t} \frac{1}{\sin t}$ est prolongeable en 0 en une fonction de classe C^1 .
- 2) Soit $\phi:[a,b]\to\mathbb{R}$ une application de classe C^1 . Démontrer que $\lim_{\lambda\to+\infty}\int_a^b\phi(t)\sin(\lambda t)\,dt=0$.
- 3) a) Soient $n \in \mathbb{N}$ et un réel t non congru à 0 modulo π . On pose

$$g(t) = \frac{\sin((2n+1)t)}{t}$$
 et $h(t) = \frac{\sin((2n+1)t)}{\sin(t)}$

Sans utiliser de récurrence, montrer que $\sum_{k=-n}^{n} \exp(2ikt) = h(t)$.

- b) En déduire la valeur de $J_n = \int_0^{\pi/2} h(t) dt$.
- 4) Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} g(t) dt$. Déduire de ce qui précède que $\lim_{n \to +\infty} I_n = \frac{\pi}{2}$.
- 5) On suppose connue l'existence de $L = \lim_{x \to +\infty} \int_0^x \frac{\sin t}{t} dt$. Déduire de 4) que $L = \frac{\pi}{2}$.

Problème A. Preuve du théorème de d'Alembert-Gauss

(inspiré écrit X PC 2004)

1) a) Soit un polynôme unitaire non constant $P(X) = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in \mathbb{C}[X]$.

On pose $m = \sup_{0 \le k \le n-1} |a_k|$. Montrer que pour tout |z| > 1, $|P(z)| \ge |z|^n - m \frac{|z|^n - 1}{|z| - 1}$.

b) Soit un polynôme non constant $P \in \mathbb{C}[X]$.

Montrer que pour tout réel $M \ge 0$, il existe un réel $r \ge 0$ tel que : $\forall z \in \mathbb{C}, |z| > r \Longrightarrow |P(z)| > M$.

2) a) Soit u et v deux nombres complexes non nuls.

Montrer que |u+v|=||u|-|v|| si et seulement si il existe un réel $\lambda<0$ tel que $v=\lambda u$.

b) On considère le polynôme particulier $Q(z) = a + b(z - z_0)^m$, avec a et $b \in \mathbb{C}^*$, $z_0 \in \mathbb{C}$ et $m \in \mathbb{N}^*$.

Montrer que pour tout $\varepsilon > 0$, il existe $z \in \mathbb{C}$ tel que $|z - z_0| \le \varepsilon$ et |Q(z)| < |a|.

Indication: Utiliser l'écriture trigonométrique de $z-z_0$.

- 3) (\bigstar) Soit $P \in \mathbb{C}[X]$ un polynôme non constant et $z_0 \in \mathbb{C}$ tel que $P(z_0) \neq 0$.
- a) Montrer qu'il existe a et $b \in \mathbb{C}^*, m \in \mathbb{N}^*$ et un polynôme R tels que

$$P(z) = a + b(z - z_0)^m + (z - z_0)^{m+1}R(z - z_0)$$

b) Montrer qu'il existe $z \in \mathbb{C}$ tel que $|P(z)| < |P(z_0)|$, c'est-à-dire tel que |P(z)| < |a|.

 $Indication: Poser z - z_0 = \rho e^{i\theta}$ et choisir θ puis ρ judicieusement.

Remarque: On suppose connu le fait que $\rho \longmapsto \left| R(\rho e^{i\theta}) \right|$ est continue au voisinage de 0.

4) (\bigstar) On note D(0,r) le disque (fermé) de centre 0 et de rayon r, c'est-à-dire : $\forall z \in \mathbb{C}, \ (z \in D(0,r) \Leftrightarrow |z| \leq r)$.

On admet que pour tout polynôme $P \in \mathbb{C}[X]$ et pour tout réel positif r, la fonction $f: z \longmapsto |P(z)|$ est bornée et atteint ses bornes sur le disque D = D(0,r), donc en particulier il existe $z_0 \in D$ tel que $|P(z_0)| = \inf_{z \in D} |P(z)|$.

Démontrer le théorème de d'Alembert-Gauss : Si $P \in \mathbb{C}[X]$ n'est pas constant, P admet au moins une racine.

Indication: Utiliser notamment la question 1) b) avec une valeur de M bien choisie.

Problème B. Etude de la moyennée d'une fonction

Partie I. Fonctions moyennables (inspiré de l'écrit de Centrale MP 2005)

Soit $f:[0,+\infty[\to\mathbb{R}$ une application continue.

On note F la primitive de f définie sur $[0, +\infty[$ par $F(x) = \int_0^x f(t)dt$.

La moyennée de f est l'application $g:[0,+\infty[\to\mathbb{R}$ définie par

$$g(0) = f(0)$$
 et $\forall x > 0$, $g(x) = \frac{1}{x} \int_0^x f(t) dt = \frac{F(x)}{x}$

On dit que f est moyennable ssi il existe la limite réelle

$$L(f) = \lim_{x \to +\infty} g(x)$$

I.1) a) Montrer que g est continue en 0.

Montrer que si f est dérivable en 0, alors g est dérivable en 0, et expliciter g'(0).

- b) Montrer que si la fonction f est bornée sur $[0, +\infty[$, alors la fonction g est bornée sur $]0, +\infty[$.
- c) Montrer que si f est croissante sur $[0, +\infty[$, alors g est croissante sur $[0, +\infty[$.
- **I.2)** On suppose que f est périodique de période p > 0, c'est-à-dire $\forall t \in [0, +\infty[f(t+p) = f(t).$
- a) Démontrer que pour tout $x \in [0, +\infty[$, on a $\int_x^{x+p} f(t)dt = \int_0^p f(t)dt$.
- b) Donner une CNS simple pour que F soit périodique de période p.
- c) Montrer que f est moyennable et déterminer L(f).
- **I.3)** On suppose que f converge vers L en $+\infty$. Montrer que f est moyennable et que L(f) = L.
- **I.4)** On considère f de la forme $f(t) = A(t)\cos(t)$, où A une application de classe C^1 définie sur \mathbb{R} .

On suppose que l'application A' converge vers 0 en $+\infty$. Montrer que f est moyennable et que L(f) = 0.

I.5) On pose $E = C^0([0, +\infty[, \mathbb{R}).$

On note E_1 l'ensemble des $f \in E$ moyennables, et E_2 l'ensemble des $f \in E$ telles que f^2 est moyennable.

- a) Démontrer que si $f \in E_1 \cap E_2$, alors $L(f)^2 \leq L(f^2)$.
- b) Donner un exemple de fonction $f \in E_1$ telle que f^2 n'est pas moyennable.
- **I.6)** On considère la fonction $f \in E$ définie par f(t) = 0 si $t \in [0, 1]$, et $f(t) = \sin(\ln t)$ si $t \ge 1$.

Démontrer que f n'est pas moyennable.

Partie II. Opérateur de moyennisation (inspiré Oral Centrale PC)

On note E le \mathbb{R} -espace vectoriel des fonctions continues $f:[0,+\infty[\to\mathbb{R}.$

Pour $f \in E$, on note T(f) l'application définie sur $[0, +\infty[$ par

$$T(f)(0) = f(0)$$
 et $\forall x \in]0, +\infty], T(f)(x) = \frac{1}{x} \int_0^x f(t) dt$

On note $\operatorname{Im} T$ l'image de T, c'est-à-dire l'ensemble des T(f) lorsque f décrit E.

- II.1) Soit $g \in E$. Montrer que $g \in \operatorname{Im} T$ ssi g est de classe C^1 sur $]0, +\infty[$ et $g'(x) = \mathfrak{o}\left(\frac{1}{x}\right)$ en $x = 0^+$.
- **II.2)** Donner un exemple d'une fonction $g \in E$ de classe C^1 sur $]0, +\infty[$ et telle que $g \notin \text{Im } T$.