
Algorithme des k-plus proches voisins

Étant donnés dans Rd un ensemble E = fx1; :::; xng de points dont on connaît une partition de E en p classes

A1; :::; Ap, on souhaite attribuer une classe à un nouvel élément x en lui attribuant la classe majoritaire parmi les

k-plus proches voisins.

Code Python

Un point de Rd est codé par une liste.

On considère un ensemble E de n points de Rd (codés par une liste de points indexée de 0 à n� 1).

On code la partition par un tableau A de longueur n à valeurs dans f0; 1; :::; k � 1g:

Ainsi, la classe d�indice j est l�ensemble des éléments E[i] tels que A[i] = j:

def distance(x,y) :

d = len(x) ; s = 0

for i in range(d) :

s = s + (x[i]-y[i])**2

return s**0.5

def plusProches(E,x,k) :

renvoie la liste L des indices i des k-plus proches voisins de x dans E

on classe dans L les éléments y = E[i] par valeur décroissante de d(x; y)

pour des raisons pratiques, on stocke les couples (i; �), où � = d(x; y)

n = len(E)

on initialise L aux k premiers éléments de E, on utilise le tri par insertions

L = [(0,distance(x,E[0]))]

for i in range(1,k) : # tri des k premiers termes

d = distance(x,E[k]) ; L.append((k,d)) ; j = i

while j > 0 and L[j-1][1] > d :

L[j-1],L[j] = L[j],L[j-1]

on passe en revue les autres éléments de E en modi�ant L

si on trouve des éléments plus proches que le dernier élément de L

for i in range(k,n) :

d = distance(x,E[i])

if d < E[k-1][1] :

L[k-1] = (i,d) ; j = k-1

while j > 0 and L[j-1][1] > d :

L[j-1],L[j] = L[j],L[j-1] # cf tri par insertions

return L

def classeMaj(L,A)

renvoie la classe majoritaire parmi les éléments de L

on utilise un tableau de comptage (mais il faut d�abord déterminer la valeur de p

p = 0

for x in range(L) :

(i,d) = x ; p = max(p,A[i])

comptage = [0]*(p+1)

for x in range(L) :

(i,d) = x ; comptage(A[i]) += 1

on cherche la classe i contenant le plus d�éléments

i = 0

for j in range(p) :

if comptage[i] > comptage[j] : i = j

return i

Remarque : Une variante de l�algorithme consiste à attribuer un poids p(y) à chacun des k-plus proches voisins y

choisis d�autant plus grand que sa distance au point x est petite : il su¢ t alors de calculer pour chaque classe la

somme des p(y) pour les voisins y appartenant à cette classe.

Algorithme des k-moyennes

Étant donnés dans Rd un ensemble E = fx1; :::; xng de points et un entier k, on souhaite réaliser une partition de

E en k classes A1; :::; Ak, souvent appelés clusters, de façon à minimiser

J(A1; :::; Ak) =
kX
j=1

X
x2Aj

x� �j

2
où

x� �j

 est la distance d�un point x 2 Aj à la moyenne �j des points de sa classe Aj :

1) Algorithme :

- Choisir k points �1; :::; �k qui représentent les futures positions moyennes

- Répéter jusqu�à ce qu�il y ait convergence de la partition (ou convergence numérique) :

- On considère pour chaque point xi le point parmi �1; :::; �k dont il est le plus proche

On obtient ainsi une partition A1; :::; Ak de E

- Pour 1 � i � k, calculer la moyenne �i des points appartenant à Ai

Remarque : Il faut choisir au départ les �i de sorte que les Ai soient non vides.

Il su¢ t de choisir pour �1; :::; �k des points distincts de E.

2) Notion d�inertie

On pose

J =

kX
j=1

X
x2Aj

x� �j

2 appelé inertie (= somme des variances)
Prop : L�inertie J diminue lors de chacune des phases de l�algorithme

dem :

(i) En remplaçant �j par la moyenne des éléments x de Aj , on diminue la valeur de J .

En e¤et, de façon générale, E((Z � �)2) est minimale lorsque � = E(Z).

(ii) Lorsque x 2 Aj et qu�il existe i 6= j tel que kx� �ik <

x� �j

, on diminue J lorsqu�on fait passer x dans la

classe Ai:

Remarque : L�algorithme converge vers un minimum local de l�inertie : cette valeur dépend des choix initiaux.

Parfois, on prend plusieurs valeurs initiales a�n de retenir l�inertie minimale obtenue.

Remarque : Dans l�algorithme des k-moyennes, la valeur de k est �xée au départ.

On peut se demander comment choisir k de façon optimale (ni trop grand ni trop petit ...). Une méthode

consiste à calculer l�inertie pour des valeurs de k croissantes et de s�arrêter lorsque l�inertie cesse de diminuer

notablement.

3) Complément informatique : un autre algorithme de partitionnement

Algorithme : On part de la partition en singletons et à chaque étape on fusionne deux classes en choisissant ceux

pour lesquels l�augmentation de l�inertie est minimale.

En fusionnant deux classes d�indices i et j, le terme

X
x2Ai

kx� �ik2 +
X
x2Aj

kx� �ik2

va être remplacé par X
x2Ai[Aj

kx� �k2 , où � =
ni�i + nj�j
ni + nj

On a
P
x2Ai[Aj kx� �k

2 =
P
x2Ai kx� �ik

2 +
P
x2Aj k�i � �k

2 =
P
x2Ai kx� �ik

2 + ni k�i � �k2 :

On a ni k�i � �k2 =
ninj
ni + nj

�i � �j

2 :
Donc cette fusion induit une augmentation de l�inertie égale à

2ninj
ni + nj

�i � �j

2 :
On choisit donc i et j (distincts) de sorte que

2ninj
ni + nj

�i � �j

2 soit minimale.
4) Code Python de l�algorithme des k-moyennes

Un point de Rd est codé par une liste.

On considère un ensemble E de n points de Rd (codés par une liste de points indexée de 0 à n� 1).

On prend k � n = cardE et on choisit les k premiers points pour les valeurs initiales des �k.

On code la partition par un tableau A de longueur n à valeurs dans [[k]] = f0; 1; :::; k � 1g:

Ainsi, la classe d�indice j est l�ensemble des éléments E[i] tels que A[i] = j:

def distance(v,w) :

d = len(v) ; s = 0

for i in range(d) :

s = s + (v[i]-w[i])**2

return s**0.5

def sommes(X,Y) : ### sommation vectorielle de deux listes

d = len(X) ; L = []

for i in range(d) :

L.append(X[i]+Y[i]]

return L

def produit(lambda,X) : ### produit d�un réel et d�une liste (codant un vecteur)

d = len(X) ; L = []

for i in range(d) :

L.append(lambda*X[i])

return L

def moyennes(E,A,k) : # procédure qui renvoie le tableau L des k moyennes

d = len(A[0]) ; n = len(E)

L = [[0]**n for j in range(k)]

c = [0]*k # permet de compter le nombre d�éléments par classe

for i in range(n) :

j = A[i] ; L[j] = somme(L[j],E[i]) ; c[j] = c[j] + 1

for j in range(k) : L[j] = produit(c[j],L[j])

return L

def plusProche(point,L) :

L est une liste de k points (représentant en fait les anciennes moyennes des classes)

on renvoie l�indice j tel que la distance entre L[j] et le point est minimale

s�il y a égalité entre plusieurs distances, on choisit le plus petit indice

k = len(L) ; jMin = 0

for j in range(1,k) :

if distance(point,L[j])<distance(E[i],L[jMin]) : jMin=j

return jMin

def partition(E,L,k) : # renvoie la partition associée à L

n = len(E) ; A = []

for i in range(n) :

point = E[i]

A.append(plusProche(point,L))

return A

def algoKmoy(E,k,N) :

on suppose les points de E distincts et on e¤ectue au plus N itérations

n = len(E)

L = [E[j] for j in range(k)] ; flag = false ; iter = 0

while flag :

B = A

A = partition(E,L,k)

iter = iter + 1 ; flag = (B != A) and iter < N

