’Algorithme des k-plus proches voisins

Etant donnés dans R? un ensemble E = {z1,...,x,} de points dont on connait une partition de F en p classes
Ay, ..., Ap, on souhaite attribuer une classe & un nouvel élément = en lui attribuant la classe majoritaire parmi les

k-plus proches voisins.
Code Python

Un point de R? est codé par une liste.
On considére un ensemble E de n points de R? (codés par une liste de points indexée de 0 & n — 1).
On code la partition par un tableau A de longueur n a valeurs dans {0, 1, ...,k — 1}.

Ainsi, la classe d’indice j est 'ensemble des éléments E[i] tels que A[i] = j.

def distance(x,y)
d =1len(x) ; s =0
for i in range(d)
s = s + (x[i]-y[i])*=2

return s**0.5

def plusProches(E,x,k)

renvoie la liste L des indices ¢ des k-plus proches voisins de z dans E
on classe dans L les éléments y = E[i] par valeur décroissante de d(zx,y)
pour des raisons pratiques, on stocke les couples (7,6), ot § = d(x,y)
n = len(E)
on initialise L aux k premiers éléments de F, on utilise le tri par insertions
L = [(0,distance(x,E[0]))]
for i in range(1,k) : # tri des k premiers termes

d = distance(x,E[k]) ; L.append((k,d)) ; j =1

while j > 0 and L[j-1][1] > d :

L{j-11,L[j] = L[j1,L[j-1]

on passe en revue les autres éléments de F en modifiant L
si on trouve des éléments plus proches que le dernier élément de L
for i in range(k,n)

d = distance(x,E[i])

if d < E[k-1][1]

Llk-1] = (i,d) ; j = k-1

while j > 0 and L[j-1][1] > d :
L[j-1],L[j] = L[j],L[j-1] # cf tri par insertions

return L

def classeMaj(L,A)

renvoie la classe majoritaire parmi les éléments de L
on utilise un tableau de comptage (mais il faut d’abord déterminer la valeur de p
p=20
for x in range(L)

(i,d) = x ; p = max(p,A[i])
comptage = [0]*(p+1)
for x in range(L)

(i,d) = x ; comptage(A[i]) += 1

on cherche la classe ¢ contenant le plus d’éléments
i=0
for j in range(p)

if comptagel[i] > comptage[j]l : i = j

return 1
Remarque : Une variante de I’algorithme consiste a attribuer un poids p(y) a chacun des k-plus proches voisins y

choisis d’autant plus grand que sa distance au point x est petite : il suffit alors de calculer pour chaque classe la

somme des p(y) pour les voisins y appartenant a cette classe.

’Algorithme des k-moyennes

Etant donnés dans R? un ensemble E = {z1,...,x,} de points et un entier k, on souhaite réaliser une partition de

E en k classes A1, ..., Ag, souvent appelés clusters, de fagon & minimiser
i 2
TEIRVRES 3 9 v
jil ZEAJ'
ol Ha: — /‘jH est la distance d’un point z € A; a la moyenne y; des points de sa classe A;.
1) Algorithme :
- Choisir k points pq, ..., it qui représentent les futures positions moyennes
- Répéter jusqu’a ce qu’il y ait convergence de la partition (ou convergence numérique) :
- On considére pour chaque point z; le point parmi g, ..., p;, dont il est le plus proche

On obtient ainsi une partition Aj, ..., Ay de

- Pour 1 <+¢ <k, calculer la moyenne p; des points appartenant a A;

Remarque : 11 faut choisir au départ les p,; de sorte que les A; soient non vides.

11 suffit de choisir pour p, ..., 1, des points distincts de E.

2) Notion d’inertie
On pose

k
J= Z Z H:E - ,ujHZ appelé inertie (= somme des variances)
7j=1 ZGAJ'

Prop : L’inertie J diminue lors de chacune des phases de ’algorithme

dem :

(i) En remplagant p1; par la moyenne des éléments = de A, on diminue la valeur de J.

En effet, de fagon générale, E((Z — u)?) est minimale lorsque pu = E(Z).

(ii) Lorsque x € A; et qu'il existe i # j tel que ||z — ;| < H:E - ,ujH, on diminue J lorsqu’on fait passer x dans la
classe A;.

Remarque : L’algorithme converge vers un minimum local de l'inertie : cette valeur dépend des choix initiaux.
Parfois, on prend plusieurs valeurs initiales afin de retenir I'inertie minimale obtenue.

Remarque : Dans ’algorithme des k-moyennes, la valeur de k est fixée au départ.

On peut se demander comment choisir k£ de fagon optimale (ni trop grand ni trop petit ...). Une méthode
consiste a calculer I'inertie pour des valeurs de k croissantes et de s’arréter lorsque l'inertie cesse de diminuer

notablement.
3) Complément informatique : un autre algorithme de partitionnement
Algorithme : On part de la partition en singletons et & chaque étape on fusionne deux classes en choisissant ceux
pour lesquels 'augmentation de I'inertie est minimale.
En fusionnant deux classes d’indices ¢ et j, le terme
2 2
Z o — pll” + Z |z — wll
€A, Z‘GA]'

va étre remplacé par
9 . Ny + M
Z |z —pll”, ou M:W
TEA;UA; v J
2 2 2 2 2
Ona) pcaua; o= pl" = 2oea o= will” + 2eea, I — nll™ = 2aea, 12— mall” +nillpw; — pll”-
nmj
n; +n;

On an; ||y — pl* = liss = wI” -

2n;n;
Donc cette fusion induit une augmentation de I'inertie égale a L H/’[’Z — “jH2 .
+ 1
.. . 2n;m; 2 L.
On choisit donc i et j (distincts) de sorte que n H P — ”j“ soit minimale.
n; n

4) Code Python de I’algorithme des k-moyennes

Un point de R? est codé par une liste.

On considére un ensemble E de n points de R? (codés par une liste de points indexée de 0 a n — 1).
On prend k < n = card E et on choisit les k£ premiers points pour les valeurs initiales des py,.

On code la partition par un tableau A de longueur n a valeurs dans [k] = {0, 1, ...,k — 1}.

Ainsi, la classe d’indice j est ’ensemble des éléments E[i] tels que Afi] = j.

def distance(v,w)
d =1len(v) ; s =0
for i in range(d)
s = s + (v[i]l-w[i])*=2

return s**0.5

def sommes(X,Y) : ### sommation vectorielle de deux listes
d =1len(X) ; L =[]
for i in range(d)
L.append (X[1]+Y[i]]

return L

def produit(lambda,X) : ### produit d'un réel et d’une liste (codant un vecteur)
d =1len(X) ; L =[]
for i in range(d)
L.append (lambda*X[i])

return L

def moyennes(E,A,k) : # procédure qui renvoie le tableau L des & moyennes
d = len(A[0]) ; n = len(E)
L

[[0]**n for j in range(k)]

c [0]*k # permet de compter le nombre d’éléments par classe
for i in range(n)

j = A[il ; L[j] = somme(L[j],E[il) ; c[jl = c[j]l + 1
for j in range(k) : L[j] = produit(c[jl,L[j])

return L

def plusProche(point,L)
L est une liste de k points (représentant en fait les anciennes moyennes des classes)
on renvoie U'indice j tel que la distance entre L[j] et le point est minimale
s’il y a égalité entre plusieurs distances, on choisit le plus petit indice
k = len(L) ; jMin = 0
for j in range(1,k)
if distance(point,L[j])<distance(E[i],L[jMin]) : jMin=j

return jMin

def partition(E,L,k) : # renvoie la partition associée a L
n =1len(E) ; A =[]
for i in range(n)
point = E[i]
A . append(plusProche(point,L))

return A

def algoKmoy(E,k,N)

on suppose les points de E distincts et on effectue au plus N itérations

n = len(E)
L = [E[j] for j in range(k)] ; flag = false ; iter = 0
while flag :

B=A

A = partition(E,L,k)

iter = iter + 1 ; flag = (B != A) and iter < N

